межгосударственный стандарт

МАСЛА МОТОРНЫЕ

Метод оценки моющих свойств на установке ИМ-1

ГОСТ 20303—74

Motor oils. Method of estimation of detergent characteristics of oils by installation UM-1

Дата введения 01.01.78

Настоящий стандарт распространяется на моторные масла и устанавливает метод оценки моющих свойств на установке ИМ-1.

Метод предназначен для проведения моторных испытаний по ГОСТ 17479.1.

Стандарт предназначен для типовых испытаний моторных масел групп B, B_2 , Γ , Γ_2 и Д с целью их классификации по моющим свойствам в соответствии с требованиями ГОСТ 17479.1.

Сущность метода заключается в проведении испытаний масел на одноцилиндровой установке в течение 96 ч и последующей оценке моющих свойств (по степени загрязненности поршня), а также антикоррозионных и противоизносных свойств (по коррозии вкладышей шатунных подшипников и по величине износа поршневых колец).

Стандарт не распространяется на моторные масла, применяемые в автотракторных двигателях.

1. АППАРАТУРА И РЕАКТИВЫ

 Установка одноцилиндровая типа ИМ-1. Принципиальная схема установки и технические характеристики установки и двигателя приведены в приложении 2.

Инструмент измерительный:

секундомер;

микрометр типа МК по ГОСТ 6507 или аналогичный, обеспечивающий предел измерений 75—100 мм с погрешностью не более 0,004 мм;

нутромеры индикаторные типа НИ по ГОСТ 868 или аналогичные, обеспечивающие пределы измерений 25 и 50—100 мм с погрешностью не более 0,020 мм;

100

калибр диаметром 85,02 мм (черт. 1);

Издание официальное

Перепечатка воспрешена

набор щупов № 1 с пределами измерений 0.02-0.59 мм, № 4 с пределами измерений 0.1-1.0 мм и № 5 с пределами измерений 0.05-1.0 мм;

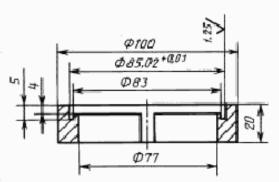
весы аналитические любого типа с погрешностью взвещивания не более 0.001 г:

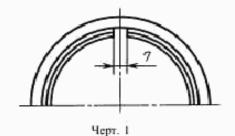
весы лабораторные общего назначения по ГОСТ 24104* с погрешностью взвешивания не более 5 г.

Нефрас C-50/170 по ГОСТ 8505 или бензин-растворитель для резиновой промышленности.

Топливо дизельное по ГОСТ 305 с массовой долей серы 0,4—0,5 % или 0,9—1,0 % (см. примечание 2).

Этиленгликоль по ГОСТ 10164.


Масла моторные контрольные (эталонные) марок $M-10B_2$, $M-10\Gamma_2$ и M-10Д в соответствии с требованиями ГОСТ 17479.1.


Примечания:

- Допускается применять другую аппаратуру, обеспечивающую необходимую точность измерения.
- Дизельное топливо по ГОСТ 305 с отступлением в части содержания серы 0,9—1,0 % для ПО «Орекнефтеоргсинтез».

Разд. 1. (Измененная редакция, Изм. № 1, 2, 3).

Калибр для измерения зазора в замке поршиевых

2. ПОДГОТОВКА К ИСПЫТАНИЮ

2.1. (Исключен, Изм. № 3).

2.2. Каждое испытание масла проводят с новыми деталями: поршнем, поршневыми кольцами, вкладышами шатунного подшипника и стопорными кольцами поршневого пальца. Серийные поршень и кольца обрабатывают в соответствии с технической документацией ВНИИ НП.

(Измененная редакция, Изм. № 3).

 Проверяют зазоры в сопрягаемых деталях, овальность и конусность, которые должны соответствовать значениям, приведенным в табл. 1.

Таблица 1

Наименование показателя	Допускаемое значение, им		
паименование показателя	минимальное	максимильное.	
Зазоры			
 Головка поршия — гильза цилиндра 	0,80	0,87	
Юбка поршня — гильза цилиндра	0,40	0,47	
3. (Исключен, Изм. № 1),			
4. Кольцо поршневое-канавка (по высоте):			
для 1-го кольца	0,25	0,27	
для 2-го кольца	0,12	0,14	
для 3-го кольца	0,08	0,10	
для 4 и 5-го колец (маслосъемных)	0,07	0,08	
5. Замок (стык) поршневых колец в калибре			
циаметром 85,02 мм	0.70	0,80	
6. Замок (стык) поршневых колец в свободном	-,, -	-,	
состоянии	8,0	11.0	

^{*}C 1 июля 2002 г. вводится в действие ГОСТ 24104-2001.

Наименование показателя	Допускаемое значение, мм-		
TAILMEROBETHE BOKESETES	минимальное	майсимальное	
 Бобышка поршня — палец поршневой (натяг) Подшипник шатунный — шейка коленчатого вала О в а л ь н о с т ь и к о н у с н о с т ь 	0,00	0,04 0,13	
9. Гильза цилиндра в сборе	_	0,05 0.03	
 Юбка поршня Отверстие в бобышке поршня 	_	0,03	
12. Подшипник нижней головки шатуна	_	0,03	

Примечания:

- 1. Показатели 1, 2, 7 и 8 таблицы рассчитывают по разности диаметров деталей.
- Показатели 4, 5, 6, 9, 10, 11 и 12 таблицы измеряют.
- Зазор по ноказателю 2 рассчитывают по размеру юбки поршия под канавкой нижнего маслосъемного кольца.

(Измененная редакция, Изм. № 1, 3).

- 2.3.1. (Исключен, Изм. № 1).
- 2.4. Внутренний диаметр подшипника после установки в шатуи должен быть $(60^{+0.11}_{-0.02})$ мм.

(Измененная редакция, Изм. № 1).

- 2.5. Перед сборкой проводят операции, указанные ниже.
- Вкладыши шатунного подшипника (верхний и нижний) и поршневые кольца маркируют соответственно номерам канавок, затем их промывают в бензине и просущивают.
- После просушивания взвещивают каждый вкладыш и кольцо в отдельности и комплект вкладышей и колец с погрешностью не более 0,001 г.
- 2.5.3. Всю масляную систему (картер, масляный насос, фильтрприемник, маслопроводы, мерный масляный бак и дозатор) промывают дизельным топливом.
- 2.5.4. Форсунку проверяют на давление впрыска, которое должно быть 12,25—12,7 МПа (125—130 кгс/см²), и качество распыла визуально. При необходимости осуществляют ее регулировку, разборку, очистку, промывку и сборку.

(Измененная редакция, Изм. № 1, 3).

 Собирают установку и проводят подготовку к пуску всех систем в соответствии с описанием устройства и правилами эксплуатации установки ИМ-1.

Допускается вместо масляного насоса серийного двигателя использовать насосы более высокой производительности для обеспечения требуемого давления масла при испытаниях масел вязкостью 6—8 мм²/с при 100 °C.

Допускается устанавливать топливоподкачивающий насос.

(Измененная редакция, Изм. № 3).

- 2.6.1. Регулируют зазоры между клапанами и коромыслами и устанавливают для впускного клапана 0,25 мм, для выхлопного 0,3 мм.
- 2.6.2. Угол опережения впрыска топлива 18 ° ± 1,0 ° до верхней мертвой точки в такте сжатия проверяют и устанавливают по градусной сетке маховика.
- 2.6.3. В картер двигателя при отключенном дозаторе наливают 2,4 кг испытуемого масла, в систему охлаждения наливают воду, топливную систему заправляют топливом с массовой долей серы 0.4-0.5 % для масел групп В и B_2 , 0.9-1.0 % для масел групп Γ , Γ_2 и Γ .

(Измененная редакция, Изм. № 3).

2.7. Рукояткой поворачивают коленчатый вал, обращая внимание на легкость и плавность его хода, наличие давления масла в системе смазки и проводят обкатку двигателя на испытуемом масле в течение 6 ч по режимам, указанным в табл. 2.

Таблица 2

	Продолжи- Эффект		Абсолютное давление		Температура, :С		
Номер режима	тельность, мин	мощность двигателя, кВт	надлува, МПа (кгс/см ²)	нращения,. мин -1.	охлаждающей жидкости	масли	воздуха на входе в двигатель
1	10	Прокрутка электромотором	0,1 (1,0)	1500	-	-	-
2	20	Холостой ход	0,11 (1,1)	-1500±20	Не выше 100	_	
3	60	2,5±0,2	0,12 (1,2)	_	Не выше 100	-	-
4	60	3,2±0,2	0,139 (1,4)	_	Не выше 100	-	-
5	90 .	4,5±0,2	0,149 (1,5)	_	Не выше 100	-	
6	60	6,4±0,2	0,149 (1,5)	_	Не выше 100	-	-
7* 7**	30 30	6,4±0,2 8,4±0,8	0,149 (1,5) 0,178 (1,8)	1535±20 1535±20	130±2 130±2	95±4 105±4	48±2 48±2
ба	5	6,4±0,2	0,149 (1,5)	_	Не выше 130		_
5a	5	4,5±0,2	0,149 (1,5)	_	Не выше 130		
4a	5	3,2±0,2	0,139 (1,4)	_	Не выше 130	-	_
3a	10	2,5±0,2	0,12 (1,2)	_	Не выше 130	_	_
2a	3	Холостой ход	0,11 (1,1)	1500	Не выше 130	-	_
la	2	Прокрутка электромотором	0,0	_	-	-	-
	6 ч						

^{*} При испытании масел групп В и В2.

(Измененная редакция, Изм. № 1, 3).

В процессе обкатки проводят проверку работоспособности систем управления и автоматики установки согласно инструкции по эксплуатации.

(Измененная редакция, Изм. № 1).

2.7.2. На режимах 2—6 температуру охлаждающей жидкости не регулируют, она должна быть равна температуре кипения воды. Перед переводом на режим 7 установку останавливают, воду заменяют на смесь воды с этиленгликолем (1:10) с температурой кипения 125—130 °C.

На этих же режимах обкатку проводят при полностью открытой заслонке на выпуске отработавших газов.

В начале режимов 7^* или 7^{**} прикрытием заслонки устанавливают давление на выпуске отработавших газов 0.0024-0.0050 МПа (0.025-0.050) кгс/см².

Часовой расход топлива в конце режима 7* должен быть $(1,75\pm0,05)$ кг/ч, в конце режима 7** $-(2,5\pm0,05)$ кг/ч, а прорыв картерных газов не более $3,3\cdot10^{-4}$ м³/с (20 дм³/мин).

Для измерения прорыва картерных газов отвод их из двигателя к счетчику производится через сапун.

(Измененная редакция, Изм. № 1, 3).

- В журнале регистрируют значения показателей в соответствии с табл. 2 и п. 2.7.2, а также давление масла и температуру выхлопных газов.
- По окончании обкатки устраняют все замеченные неполадки в работе установки и сливают масло из картера.
- 2.9. Новую установку перед испытанием проверяют на эталонных маслах марок М-10В₂, М-10Г₂ и М-10Д.

(Измененная редакция, Изм. № 1, 2).

^{**} При испытании масел групп Г, Г2 и Д.

3. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

- В картер двигателя наливают 2,4 кг испытуемого масла, в расходный бак и дозатор 4 кг. (Измененная редакция, Изм. № 1).
- Время, затраченное на нагружение и снятие нагрузки с двигателя, не входит в основное режимное время испытания.
- При работе установки на основном режиме выдерживают условия, приведенные в табл. 2а и 3.

Таблипа 2а

Наименование показателя	Условия испытания масел группы		
наименование показателя	В и В́2	Г, Сан Д	
Часовой расход топлива, кг/ч	1,75±0,05	2,5±0,05	
Температура воздуха на входе в двигатель, 'С	48±2	48±2	
Давление масла в системе смазки, МПа (кгс/см ²)	0,294±0,02 (3±0,2)	0,294±0,02 (3±0,2)	
Температура отработавших газов на выпуске, °С	380-450	480-600	
Давление отработавших газов на выпуске, МПа кгс/см ²)	0,0024-0,0050 (0,025-0,05)	0,00240,0050 (0,0250,05)	

Таблица 3

Наименование	Продол- житель-	Эффективная	Частота Абсолютное		Темпера	атура, °С
режима:	ность, мин	мошность двигателя по прибору, кВт	вращения, мин-1			масла
Нагружение двигателя	2 3 5 5 10	Прокрутка электромотором Холостой ход 2,5±0,2 3,2±0,2 4,5±0,2	1450 1500±20 —	- 0,11 (1,1) 0,12 (1,2) 0,139 (1,4) 0,149 (1,5)	130±2 130±2 130±2 130±2	- - -
Основной режим работы дви-	15	6,4±0,2	_	0,149 (1,5)	130±2	_
гателя: для масел групп В и В ₂	5760	6,4±0,2	1535±20	0,149 (1,5)	130±2	95±4
для масел групп Γ , Γ_2 и Д Снятие наг-	:5760 (96:4)	8,4±0,8 6,4±0,2	1535±20	0,178 (1,8) 0,149 (1,5)	130±2	105±4
рузки	5 5 10	4,5±0,2 3,2±0,2 2,5±0,2	_ _ _	0,149 (1,5) 0,149 (1,5) 0,139 (1,4) 0,12 (1,2)	_ _ _	_ _ _
	3	Холостой ход	1500±20	0,12,(1,1)	_	_
	-2	Прокрутка электромотором	1450	_	_	_

П р и м е ч а н и е. В ходе испытания допускается снижение мощности на 10 % ее значения, измеренного после первых 12 ч работы на основном режиме.

(Измененная редакция, Изм. № 1, 3).

- При испытании в журнал записывают:
- количество масла, налитого в картер и в расходный бак перед испытанием по п. 3.1, а также первоначальный уровень масла в расходном баке;
- б) уровень масла в расходном баке и расход масла по п. 3.7 через каждые 12 ч работы на основном режиме;
- в) показатели, перечисленные в табл. 3 для основного режима, в п. 3.3 и давление в картере в Па (мм вод. ст.) через каждый час работы;
- г) прорыв газов в картер после каждых 3 ч работы на основном режиме или при резком увеличении давления в картере.

При прорыве картерных газов более 3,3 10-4 м³/с (20 дм³/мин) в двигателе выявляют причины неисправности.

(Измененная редакция, Изм. № 1, 2, 3).

 При обнаружении неисправности установки или нарушении условий испытаний принимают меры к их устранению, остановив установку, если это необходимо.

В ходе испытаний не должно быть более шести остановок продолжительностью более 6 ч, не считая остановки после обкатки. Число и продолжительность остановок в процессе обкатки не регламентируются.

- В процессе испытания проводят регулирование температуры охлаждающей жидкости: повышение температуры осуществляют выпариванием воды из охлаждающей жидкости; понижение температуры осуществляют добавлением воды в охлаждающую жидкость.
- Расход масла определяют за каждые 12 ч работы на основном режиме, как разность отсчета уровней масла в расходном баке за указанное время и выражают в граммах.

Величина расхода масла должна быть для масел с вязкостью 6—8 мм²/с (6—8 сСт) при 100 °С и загущенных масел не менее 15 г/ч, а для масел с вязкостью 10-20 мм²/с (10-20 сСт) при 100 °С не более 40 г/с.

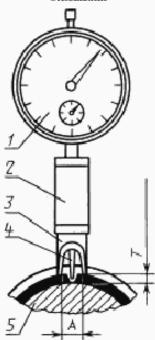
3.8. Из масляной системы двигателя перед остановкой в конце испытания (при отключенном дозаторе) отбирают пробу работавшего масла в количестве 150 г для следующих определений:

кинематической вязкости при 100 °C по ГОСТ 33; щелочного числа по ГОСТ 11362:

содержания нерастворимого осадка по ГОСТ 20684.

Эти показатели работавшего масла носят контрольный характер и не включаются в оценку испытуемого масла.

3.7, 3.8. (Измененная редакция, Изм. № 1, 2).


- 3.9. После окончания испытания проводят указанные ниже операции.
- 3.9.1. Отработанное масло из картера и свежее из системы дозирования сливают раздельно и взвешивают с погрешностью не более 5,0 г.
- 3.9.2. Расход масла за испытание принимают как разность между суммарным количеством залитого перед испытанием и долитого через систему дозирования и суммарным количеством слитого из картера и взятого на анализ масла для определения показателей в соответствии с п. 3.8.
 - Охлаждающую жидкость из системы охлаждения сливают.
- Осуществляют частичную разборку двигателя, при которой снимают головку цилиндра, боковую крышку картера и шатунно-поршневую группу.
- 3.10. Подвижность поршневых колец в канавках поршня определяют по табл. 5.

При наличии неподвижных (закоксованных) колец масло не соответствует по моторным свойствам группам В, В, Г, Г, и Д и дальнейшая оценка загрязненности поршня не проводится.

После определения подвижности колец их снимают с поршня. тель; 3- наконечник с базой, рав-

- Поршень, поршневые кольца и шатунные вкладыши опо- ной 8 мм; 4 измерительный штифт ласкивают в бензине, просушивают и осматривают. Обнаруженные повреждения деталей записывают в журнал.
 - 3.10, 3.11. (Измененная редакция, Изм. № 1).

Схема измерения толщины отложений

I — часовой индикатор; 2 — держа-1,5 мм; 5 — поршень

Черт. 2

 Кольца промывают горячей водой и просушивают, участки с прилипшими отложениями очищают деревянными или медными скребками.

(Измененная редакция, Изм. № 3).

3.13. Каждое кольцо отдельно и весь комплект, каждый вкладыш индивидуально (верхний и нижний) и в комплекте взвешивают с погрешностью не более 0,001 г.

Взвешивание и оценку коррозии вкладышей не производят, если вкладыши имеют выкращивание, наволакивание, эрозию, глубокие риски и другие механические повреждения.

3.14. В канавках поршня, где имеются отложения нагара, не менее чем в восьми точках, расположенных равномерно по окружности, начиная отсчет от середины радиального паза днища поршня, с помощью металлического скребка снимают слой отложений до металлической поверхности на дуге не менее 2,0 мм и не более 4,0 мм. Толщину слоя отложений измеряют с помощью часового индикатора со специальным наконечником (черт. 2) Индикатор на нуль устанавливают по канавке чистого поршня.

Среднюю толщину слоя отложений (N) в миллиметрах в канавках вычисляют по формуле

$$N = \frac{\Sigma T_{1-8}}{8},$$

где ΣT_{1-8} — сумма толщин слоя нагароотложений, измеренных в точках 1-8.

(Измененная редакция, Изм. № 1).

3.15. (Исключен, Изм. № 3).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Соответствие масел группам по ГОСТ 17479.1 устанавливают по оценке моющих свойств. Для товарных масел, допущенных к производству и применению до 01.01.86, соответствие группам подтверждают по табл. 4.

Таблипа 4

	Оценка масел для групп			
Наименование показателя	- В и, В±	Г-и Г2	Д	
	не более			
Моющие свойства масла, баллы 1. Подвижность поршневых компрессионных				
колец	0,0	0,5	0,0	
2. Загрязненность всех поршневых канавок	11,0	12,0	9,0	
в том числе первой	6,0	7,0	5,0	
3. Загрязненность юбки поршия	1,5	3.0	1,5	
4. Загрязненность наружной поверхности				
поршня (канавки и юбки)	12,5	15,0	10,5	
5. Загрязненность внутренней поверхности				
поршня (днища и бобышек)	6,0	12,0	7,0	
в том числе днища поршня	5,0	9,5	4,5	
6. Общая загрязненность внутренней и				
наружной поверхности поршня	18,5	27,0	17,5	
Противоизносные свойства				
7. Износ комплекта поршневых колец, мг	600 .	1200	1200	
Коррозионные свойства				
8. Износ комплекта вкладышей, мт	75	150	150	
9. Видимая коррозия, оценка визуальная	Отсутствие			

Примечания:

- 1. (Исключен, Изм. № 2).
- 2. Показатели, указанные в подпунктах 7, 8 и 9, не дифференцируют масла по группам.

(Измененная редакция, Изм. № 1, 2, 3).

Для новых и товарных масел, допущенных к производству и применению после 01.01.86, соответствие группам устанавливают и подтверждают сравнением результатов оценки испытуемого и эталонного масел по общей загрязненности внутренией и наружной поверхности поршия ($\Sigma O_{\rm arg}$).

Испытуемое масло соответствует назначенной группе, если его значение ($\Sigma O_{\text{загр.}}$) меньше 0,95 значения ($\Sigma O_{\text{загр.}}$) эталонного масла той же группы.

Испытуемое масло не соответствует назначенной группе, если его значение ($\Sigma O_{\text{загр.}}$) больше 1,4 значения ($\Sigma O_{\text{загр.}}$) эталонного масла той же группы.

Если значение ($\Sigma O_{\text{загр.}}$) испытуемого масла в пределах 0,95—1,4 значения ($\Sigma O_{\text{загр.}}$) эталонного масла той же группы, то проводят второе испытание испытуемого масла.

В этом случае масло соответствует назначенной группе, если среднее арифметическое результатов двух испытаний ($\Sigma O_{\text{загр.}}$) меньше или равно 1,2 значения ($\Sigma O_{\text{загр.}}$) эталонного масла этой группы.

Допускаемое расхождение между значениями ($\Sigma O_{\text{ыгр.}}$) при двух последовательных испытаниях одного образца масла не должно превышать 30 % большего значения. Если это условие не выполняется, выявляют и устраняют причины неисправности установки и проводят испытание эталонного масла соответствующей группы, выполняя требование приложения 1. После этого проводят два последовательных испытания исследуемого масла.

4.1.1. Подвижность поршиевых компрессионных колец оценивают по табл. 5.

Таблица 5

Состояние кольца	Условия поленжности	Опенка, баллы
Свободное	Перемещается в канавке под действием собственной массы, когда поршень повернут из вертикального положения в горизонтальное	
Задерживающееся (инертное)	Не перемещается в канавке под действием собственной массы, но движется при приложении легкого усилия, при котором кольцо не пружинит	

4.1.2. Суммарную загрязненность всех поршневых канавок компрессионных колец (ΣO_{κ}) в баллах вычисляют по формуле

$$\Sigma O_{\kappa} = O_{\kappa 1} + O_{\kappa 2} + O_{\kappa 3}$$

где O_{k1} , O_{k2} и O_{k3} — оценки отложений соответственно в первой, второй и третьей канавках.

4.1.2.1. Отложения одного вида в каждой поршневой канавке компрессионных колец ($O_{\kappa,n}$) оценивают в баллах и вычисляют по формуле

$$O_{\kappa,m} = \frac{S_{\kappa}}{100} \cdot K_{\gamma,\kappa}$$

где S_{κ} — поверхность внутренней стенки соответственно каждой канавки, покрытая отложениями одного вида, %;

К_{т.с} — коэффициент толщины слоя, вычисляют по формуле

$$K_{\rm r.c} = \frac{N}{0.9} \cdot 10$$
,

где N — средняя толщина слоя отложения в канавке, определенная по п. 3.14, мм;

0,9 — максимальный расчетный радиальный зазор в сопряжении кольцо-канавка.

Отложения толщиной до 0,05 мм и черный лак оценивают коэффициентом 0,5. При наличии лака других цветов коэффициент 0,5 корректируют умножением его на соответствующий показатель по табл. 7.


Оценка в ноль баллов — поршневая канавка чистая.

Оценка в 10 баллов — 100 % площади внутренней стенки канавки покрыты твердыми углеродистыми отложениями максимальной толщины.

(Измененная редакция, Изм. № 1, 3).

4.1.3. Для оценки отложений на юбке поршня ее поверхность условно разбивают на участки, как показано на черт. 2а. Общую площадь юбки принимают за 100 %.

Схема деления поверхности юбки поршня на участки

Участки поверхности юбки	Ą	Б	В	F	Д	E
Количество	1	4	2	4	1	4
Поверхность 1-го участка, %	18	4	12	5	10	3

Черт. 2а

Суммарную оценку (ΣO_{10}) в баллах вычисляют по формуле

$$\Sigma O_{10} = \Sigma O_{0.10.}$$

где $O_{\text{о.ю.}}$ — отдельные оценки отложений одного цвета, определяемые в соответствии с п. 4.1.3.2. (Измененная редакция, Изм. № 3).

4.1.3.1. (Исключен, Изм. № 3).

4.1.3.2. Оценку отложений одного цвета ($O_{o,o}$) в баллах вычисляют по формуле

$$O_{0.10} = \frac{S_{10}}{10} \cdot K_{11}$$
,

где S_{10} — поверхность, покрытая отложениями одного цвета, %;

К_п — коэффициент цвета отложений, определяют по табл. 7.

Таблица 7*

Цвет отложений	Коэффициент цвета
Черный (нагар. лак) Темно-серый, темно-коричневый Серый, коричневый Светло-серый, светло-коричневый Желтый	1,0 0,8 0,5 0,3 0,1

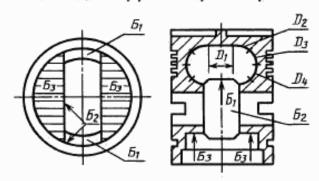
Оценка в ноль баллов — юбка поршия чистая:

Оценка в 10 баллов — 100 % поверхности юбки покрыто отложениями черного цвета.

(Измененная редакция, Изм. № 3).

4.1.4. Суммарную загрязненность наружной поверхности поршня ($\Sigma O_{\text{м.n.}}$) в баллах вычисляют по формуле

$$\Sigma O_{\scriptscriptstyle \rm H,H} = \Sigma \ O_{\scriptscriptstyle \rm K} + \Sigma \ O_{\scriptscriptstyle \rm lo} \ , \label{eq:sigma}$$


где ΣO_{κ} — суммарная загрязненность всех поршневых канавок компрессионных колец, определенная по п. 4.1.2;

 ΣO_{10} — суммарная загрязненность юбки поршия, определенная по п. 4.1.3.

^{*} Табл. 6. (Исключена, Изм. № 3).

4.1.5. Внутренняя поверхность поршня условно делится на два участка «зона днища» и «зона бобышек» (черт. 3, табл. 8) и оценивается раздельно.

Схема оценки внутренней поверхности поршия

D — диище; E — бобышка

Черт. 3

Таблица 8

Внутренняя поверхность поршня	Участки площаци	Поверхность, %
Зона днища <i>D</i>	D ₁ D ₂ D ₃ D ₄ Сумма: (1—4)	4 21 24 51 100
Зона бобышек $\it E$	2Б ₁ 2Б ₂ 2Б ₃ Сумма (1—3)	5 70 25 100

Суммарную оценку загрязненности внутренней поверхности поршня ($\Sigma O_{a,a}$) в баллах вычисляют по формуле

$$\Sigma O_{0,n} = O_D + O_E$$

где O_D — оценка отложений на днище, балл; O_E — оценка отложений зоны бобышек, балл.

4.1.5.1. Оценку отложений на днище (O_3) и в зоне бобышек (O_5) в баллах вычисляют по формулам:

$$O_n = \sum O_{n,n,n}$$
;

$$O_0 = \Sigma O_{0.4LR}$$
,

где $O_{o,n,n}$ — отдельные оценки отложений каждого вида, определяемые по формуле

$$O_{o,u.u} = \frac{S}{10} \cdot K_o$$
,

где K_0 — коэффициент отложений; определяемый по табл. 9.

Таблица 9

Характер и цвет отложений	Коэффициент отложений
Нагар	1,0
Лак черный	0,5
Лак темно-коричневый, темно-серый	0,5
Лак коричневый, серый	0,3
Лак светло-коричневый, желтый, светло-серый	0,1

C. 11 FOCT 20303-74

Оценка в ноль баллов - вся внутренняя поверхность поршня чистая.

Оценка в 10 баллов — 100 % внутренней поверхности днища и зоны бобышек покрыты нагаром.

(Измененная редакция, Изм. № 3).

- 4.1.5.2. (Исключен, Изм. № 3).
- 4.1.6. Суммарную загрязненность всей наружной и внутренней поверхности поршня ($\Sigma O_{\text{загр.}}$) в баллах вычисляют по формуле

$$\Sigma O_{\text{marp}} = \Sigma O_{\text{min}} + \Sigma O_{\text{min}}$$

- где $\Sigma O_{\text{и.п.}}$ суммарная оценка загрязненности наружной поверхности поршня, определяют по п. 4.1.4:
 - $\Sigma O_{8,0}$ суммарная оценка загрязненности внутренней поверхности поршня, определяют по п. 4.1.5.
 - 4.1.6.1. (Исключен, Изм. № 3).
- 4.2. Противоизносные свойства масел оценивают по износу комплекта поршневых колец ($O_{\mu,\kappa}$) в граммах и вычисляют по формуле

$$O_{\text{\tiny M.K}} = m_1 - m_2$$

- где m₁ масса комплекта пориневых колец до испытания, г;
 - т. масса комплекта очищенных от отложений поршневых колец после испытания, г.
- 4.3. Коррозионные свойства масел оценивают по износу комплекта вкладышей шатунного подшипника и состоянию их рабочих поверхностей (оценка визуальная). Обе оценки обязательны.
 - 4.3.1. Износ вкладышей ($O_{n,nc}$) в граммах вычисляют по формуле

$$O_{H,RK} = m_3 - m_4$$

- где m₃ масса комплекта вкладышей до испытания, г;
 - т. масса комплекта вкладыщей после испытания; г.

Увеличение массы одного из вкладышей или комплекта является браковочным показателем.

4.3.2. Состояние рабочей поверхности оценивают визуально. Рабочая поверхность вкладышей не должна иметь видимую коррозию и рыхлых, легко отделяющихся отложений; допускается наличие цветной пленки, прочно сцепленной с металлом поверхности. Цвет пленки не регламентируется и может быть любой, вплоть до черного.

ТРЕБОВАНИЯ К ИСПЫТАНИЯМ ЭТАЛОННЫХ МАСЕЛ

Испытания эталонных масел проводят:

после монтажа новой установки или нового двигателя;

при аварии, связанной с заменой блока картера или коленчатого вала;

через каждые 10 испытаний.

При этом оценка загрязненности всех поршневых канавок и первой канавки поршня должна быть для масел:

М-10В₂ 7,0-11,0 и 4,0—6,0 баллов, М-10Г₂ 8,0—12,0 и 4,5—7,0 баллов, М-10Д 5,0—9,0 и 3,0—5,0 баллов.

По другим показателям должна быть получена оценка в соответствии с табл. 4 настоящего стандарта.

Если при испытании эталонного масла на новой установке не получены результаты, соответствующие группе данного эталонного масла, должны быть выяснены и устранены причины неисправной работы установки. Испытание эталонного масла повторяют.

ПРИЛОЖЕНИЕ 2 Справочное

ПРИНЦИПИАЛЬНАЯ СХЕМА УСТАНОВКИ

1. Техническая характеристика установки

Марка установки	ИМ-1

Система охлаждения Термосифонная (с конденсатором паров охлаждающей жидкости, охлаждаемым водой), обеспечивающая температуру охлаждающей

жидкости на выходе из двигателя 130 °C

Система наддува Принудительная от воздушной сети через редукционный клапан или

отдельного компрессора производительностью 100 кг/ч. Абсолютное

давление наддува 0,178 МПа

Система выхлопа С регулируемой заслонкой

Система долива масла Автоматическая, обеспечивающая поддержание постоянного уровня

масла в картере двигателя, которому соответствует масса 2,4 кг

Устройство отбора мощности Обеспечивающее пуск и торможение двигателя

Обеспечивающие измерение и регистрацию параметров с заданной

точностью по табл. 2, 2a; 3 Пожаробезопасная

Система подогрева масла и воздуха

Давление сжатия, МПа (кгс/см²)

Расход топлива, кг/ч

Измерительные приборы

на впуске

2. Техническая характеристика двигателя

Тип двигателя	1 ч 8,5/11, четырехтактный дизель с вихрекамерой
Число цилиндров	1
Расположение цилиндра	Вертикальное
Диаметр цилиндра, мм-	85
Ход поршня, мм	110
Рабочий объем, дм ³	0,623
Степень сжатия	16
Максимальная мощность, кВт	8,36
Абсолютное давление наддува,	0,178 (1,8)
МПа (кгс/см ²)	
Частота вращения, мин-1	1585
Давление сгорания, МПа (кгс/см2)	10,79 (110)

111

8,23 (84) 2.5

C. 13 FOCT 20303-74

Смазка Комбинированная. Под давлением смазываются шатунный подшипник, разбрызгиванием — цилиндропоршневая группа, коренные подшипники коленчатого вала и шестерни газораспределения

От подкачивающего плунжерного насоса

Система подачи топлива к насосу

высокого давления

Тип топливного насоса высокого

давления

Топливный фильтр

Форсунка.

Материал поршня Коренные подшипники колен-

чатого вала

Шатунный подшипник.

Одноплунжерный, золотниковый

Войлочный или бумажный

Закрытого типа со штифтовым распылителем, охлаждаемая с

давлением распыла 12,5—13,0 МПа (125—130 кгс/см²)

Алюминиевый сплав Подшипники качения

Сменные вкладыши с антифрикционной заливкой из свинцовистой

бронзы

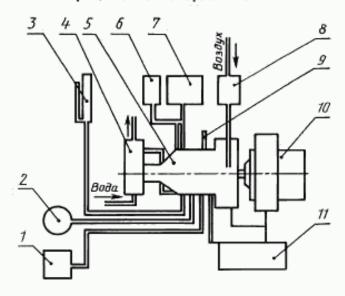
3. Регудируемые параметры:

температура воздуха на впуске в двигатель;

температура масла в картере двигателя;

расход топлива;

температура охлаждающей жидкости;


давление наддува;

противодавление на выпуске;

давление масла в двигателе,

Допускается полная автоматизация регулирования параметров.

Принципиальная схема установки ИМ-1

I — выхлопной колодец;
 2 — система измерения прорыва картерных газов;
 3 — мерный масляный бак дозатор;
 4 — термосифонная охлаждающая система;
 5 — двигатель;
 6 — расхоломер топлива;
 7 — топливный бак;
 8 — подотрев воздуха с регулятором надаува;
 9 — подотрев масла;
 10 — тормозное устройство;
 11 — пульт управления

112

ПРИЛОЖЕНИЯ 1, 2. (Измененная редакция, Изм. № 3).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- РАЗРАБОТАН И ВНЕСЕН Министерством нефтеперерабатывающей и нефтехимической промышленности СССР
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 25.11.74 № 2600
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
ГОСТ 33—2000 ГОСТ 305—82 ГОСТ 868—82 ГОСТ 6507—90 ГОСТ 8505—80 ГОСТ 10164—75 ГОСТ 11362—96 (ИСО 6619—88) ГОСТ 17479.1—85 ГОСТ 20684—75 ГОСТ 24104—88	3.8 1.1 1.1 1.1 1.1 3.8 Вводная часть; 1.1; 4.1 3.8

- Ограничение срока действия снято во протоколу № 2—92 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 2—93)
- 6. ИЗДАНИЕ с Изменениями № 1, 2, 3, утвержденными в марте 1982 г., декабре 1987 г., январе 1995 г. (ИУС 6—82, 4—88, 4—95)

