ГОСУДАРСТВЕННЫ И СТАНДАРТ СОЮЗА ССР

МИКРОСХЕМЫ ИНТЕГРАЛЬНЫЕ

Метод измерения среднего температурного дрейфа входных токов и разности входных токов операционных усилителей

FOCT

Integrated circuits, Method of measuring 23089.9—83 the operational amplifiers input bias current temperature

drift and input currents

OKII 62 31(D)

Постановлением Государственного комитета СССР по стандартам от 9 сентября 1983 г. № 4165 срок действия установлен

c 01.01.84

Проверен в 1988 г. Постановлением Госстандарта СССР от 28.06.88 № 2431 срок действия продлен

до 01.01.94

Настоящий стандарт распространяется на операционные усилители (ОУ) и устанавливает метод измерения среднего температурного дрейфа разности входных токов $\alpha_{\text{M}_{\text{EX}}}$ и входных токов $\alpha_{\text{M}_{\text{EX}}}$ ($\alpha_{\text{M}_{\text{EX}}}$).

Общие требования к измерению и требования безопасности —

no ΓOCT 23089.0—78.

Стандарт соответствует СТ СЭВ 3411—81 в части метода измерения среднего температурного дрейфа разности входных токов и входных токов (см. приложение 1).

принцип и условия измерений

- 1.1. Метод основан на измерении разности входных токов $\Delta I_{\rm sx}$ и входных токов $I_{\rm sx}$ ($I_{\rm sx1}$, $I_{\rm sx2}$) при температурах T_1 и T_2 с последующим вычислением приращения разности входных токов и входных токов при изменении температуры на 1 °C.
- 1.2. Разность входных токов и входные токи измеряют методами, приведенными в ГОСТ 23089.4—83.

Издание официальное

★

Переиздание. Декабрь 1991 г.

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен без разрешения Госстандарта СССР Электрический режим и условия измерений должны соответствовать установленным в стандартах или технических условиях на ОУ конкретных типов.

2. ABBAPATYPA

2.1. Аппаратура — по ГОСТ 23089.4—83.

2.2. Устройства задания значений температур T_1 и T_2 должны обеспечивать установку и поддержание значений температур T_1 и T_2 , установленных в стандартах или технических условиях на ОУ конкретных типов, с такой точностью, чтобы разность температур $|T_2-T_1|$ за время измерения не изменялась более чем на 5 %.

з. ПОДГОТОВКА И ПРОВЕДЕНИЕ ИЗМЕРЕНИЯ

3.1. Выдерживают ОУ в устройстве, задающем температуру T_1 в течение интервала времени, указанного в стандартах или технических условиях на ОУ конкретных типов, и необходимого для достижения теплового равновесия.

3.2. Измеряют разность входных токов ΔI_n , и входные токи I_{nn}

 $(I_{1\times 1}^{\prime}, I_{2\times 2}^{\prime})$ при температуре I_1 по ГОСТ 23089.4—83.

3.3. Выдерживают ОУ в устройстве, задающем температуру T_2 в течение интервала времени, указанного в стандартах или технических условиях на ОУ конкретных типов, и необходимого для достижения теплового равновесия.

3.4. Измеряют разность входных токов $\Delta I_{\rm nx}^{s}$ и входные токи $I_{\rm nx}^{s}$ ($I_{\rm nx,1}^{s}$, $I_{\rm nx,2}^{s}$) при температуре T_2 по ГОСТ 23089.4—83.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

 Значение среднего температурного дрейфа разности входных токов и входных токов определяют по формулам;

$$\alpha_{\Delta I_{\rm BX}} = \frac{|\Delta I_{\rm BX}^* - \Delta I_{\rm BX}^*|}{|T_2 - T_1|} ; \qquad (1)$$

$$\alpha_{I_{\text{ext}}}(\alpha_{I_{\text{ext}}}, \alpha_{I_{\text{ext}}}) = \frac{|I_{\text{ext}[1,2)}^{*} - I_{\text{ext}[1,2)}|}{|T_{2} - T_{1}|} . \tag{2}$$

5. ПОКАЗАТЕЛИ ТОЧНОСТИ ИЗМЕРЕНИЯ

5.1. Погрешность измерения среднего температурного дрейфа разности входных токов и входных токов без учета временного дрейфа, а также шумовых параметров проверяемого ОУ должна быть в пределах $\pm 10 \%$ с доверительной вероятностью не менее 0.997.

- 5.2. Суммарную погрешность измерения среднего температурного дрейфа разности входных токов и входных токов указывают в стандартах или технических условиях на ОУ конкретных типов.
- 5.3. Определение показателей точности измерения приведено в приложении 2.

ПРИЛОЖЕНИЕ 1 Справочное

ИНФОРМАЦИОННЫЕ ДАННЫЕ О СООТВЕТСТВИИ ГОСТ 23089.9—83 СТ СЭВ 3411—81

ГОСТ 23089.9-63 соответствует п. 4 СТ СЭВ 3411-81.

ПРИЛОЖЕНИЕ 2 Рекомендуемое

ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЕЙ ТОЧНОСТИ ИЗМЕРЕНИЯ СРЕДНЕГО ТЕМПЕРАТУРНОГО ДРЕЙФА РАЗНОСТИ ВХОДНЫХ ТОКОВ И ВХОДНЫХ ТОКОВ ОУ

- 1. Составляющие суммарной погрешности измерения среднего температурного дрейфа разности входных токов
- 1.1. Погрешность δ_1 , вызванную неточностью измерения $\Delta I_{\delta x}$, определяют но-формуле

$$\delta_1 = \begin{bmatrix} \frac{\alpha_{\Delta I_{\text{ax,max}}} \cdot T_1 + \Delta I_{\text{ax,max}}}{\alpha_{\Delta I_{\text{ax,max}}} \cdot (T_2 - T_1)} \end{bmatrix} \cdot \epsilon_1' . \tag{1}$$

где δ_1' — ногрешность измерительной установки по ГОСТ 23089.4—83; $\sigma_{\Delta\ell_{BE,\;max}}$ — максимальное значение среднего температурного дрейфа разности входных токов для ОУ конкретного типа;

ости входных токов для ОУ конкретного типа;

— максимальное значение разности входных токов при температуре 25 °С для ОУ конкретного типа;

 T_1 , T_2 — температуры, при которых проводят измерения.

1.2. Погрешность δ_{z} , вызванную источностью измерения ΔI_{zx} , определяют во формуле

$$\delta_{2} = \left[\frac{a_{\Delta I_{\rm BX,max}} \cdot T_{2} + \Delta I_{\rm BX,max}}{a_{\Delta I_{\rm BX,max}} \cdot (T_{2} - T_{1})} \right] \cdot \delta' . \tag{2}$$

 Погрешность б₃, вызванную неточностью установки и поддержания температуры T_1 , определяют по формуле

$$\delta_{i} = \left(\frac{T_{1}}{T_{2} - T_{1}}\right) \cdot \delta_{3}', \tag{3}$$

где δ_3' — погрешность установки и поддержания температуры T_1 . 1.4. Погрешность δ_4 , вызванную неточностью установки и поддержания температуры T_2 , определяют по формуле

$$\delta_4 = \left(\frac{T_5}{T_2 - T_1}\right) \cdot \delta_4' , \qquad (4)$$

где $\delta_4^{''}$ — погрешность установки и поддержання температуры T_2 .

2. Суммарная погрешность измерения
2.1. Суммарную погрешность измерения среднего температурного дрейфа разности входных токов определяют по формуле

$$\delta_{2} = K \sqrt{\delta_{1}^{2} + \delta_{2}^{2} + \delta_{3}^{2} \cdot \delta_{4}^{2}}$$
, (5)

где К — поправочный коэффициент, равный 1,58 при доверительной вероятно-

Примечание, Формулы для расчета погрешностей измерения среднего температурного дрейфа входных токов аналогичны,

44 - 2-7

3 . j. 1 .