

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТАНКИ ЗУБОШЛИФОВАЛЬНЫЕ ДЛЯ КОНИЧЕСКИХ КОЛЕС

основные размеры, нормы точности

ГОСТ 13142-90

Издание официальное

20 коп.

53 12-89/1082

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО УПРАВЛЕНИЮ КАЧЕСТВОМ ПРОДУКЦИИ И СТАНДАРТАМ

Москва

в ГОСТ 13142—90 Стани размеры. Нормы точности

В каком месте

Таблицы 2, 5, 7, 13, 14, 16, 17. Графа ∢Номер пункта»

Таблицы: 16, 17. Гра-Фа «Допуск»

ГОСУДАРСТВЕННЫЯ СТАНДАРТ СОЮЗА ССР

СТАНКИ ЗУБОШЛИФОВАЛЬНЫЕ ДЛЯ КОНИЧЕСКИХ КОЛЕС

Основные размеры, Нормы точности

ГОСТ 13142—90

Beyel and hypoid gear grinding machines. Basic dimensions. Standards of accuracy

OKII 38 1569

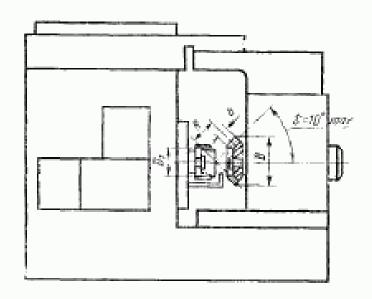
Дата введения \$1.91.91

Настоящий стандарт распространяется на зубошлифовальные станки общего назначения классов точности В и А для конических колес с прямыми и круговыми зубьями, работающие методом обката с единичным и групповым деленнем.

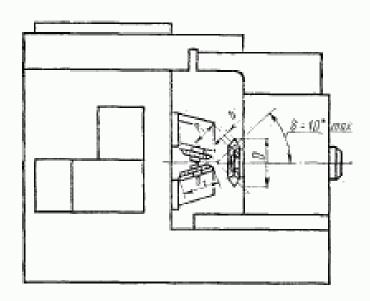
Стандарт устанавливает требования к основным размерам, геометрической точности станка и точности обработки образцовизделий.

1. ОСНОВНЫЕ РАЗМЕРЫ

Основные размеры станков должны соответствовать указанным на черт. I и в табл. I.


Мадание официальное

Перепечатка воспрещена


С Издательство стандартов, 1990

Станки для обработки конических колес с круговыми зубьями

Станки для обрабстки конических колес с прямыми зубъями

D — наибольший диаметр обрабатываемых зубчатых колес, R —наибольшее среднее конусное расстояние обрабатываемых зубчатых колес, в том числе для колес с круговыми зубьями с углом наклона средней линии зуба 30° при обработке шлафовальным кругом наибольшего диаметра; b — наибольшая ширина зубчатого венца обрабатываемых зубчатых колес.

 \hat{D}_1 и D_2 — наибольший диаметр шлифовального круга, δ — наименьший угол делительного конуса обрабатываемых зубчатых колес.

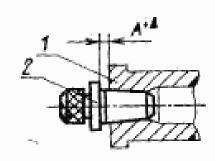
Черт. 1

Применание. Чертеж не определяет конструкцию станка.

Таблипа 1

Размеры, им

D		125	200	320	500	800
т _{те} *, не менее		1,6	2.5	4	6	10
та*, не менее		1.25	2	3,5	5	8.
R, не менее		55	90	140	220	360
Б , не менее		8	16	32	50	80
Конея шпинделя бабки из 17547, не менее	лелия по ГОСТ	4	6	80.	100	153
Цилиудрическое отвер-	диаметр	20	32	50	80	125
стие шпинделя бабки изделия, не менее	длина от торна швинделя	160	250	400	500	630
D ₁ , не менее		80	160	250	315	500
D_{2} , не менее		160	200	250	;	90×0
Размеры посадочной пов шлифовального шпинделя рабатывающих зубчатые выми зубьями по ГОСТ 2 менее	KOBECO C KROTEO-	20	25	32	40	50


^{*} m_{is} — наибольший внешний окружной модуль обрабатываемых зубчатых колес, m_{is} — наибольний средний нормальный модуль обрабатываемых колес с круговыми зубьями.

2. ГЕОМЕТРИЧЕСКАЯ ТОЧНОСТЬ СТАНКА

- Общие требования к испытаниям станков на точность по ГОСТ 8.
- 2.2. Нормы точности станков не должны превышать значений, указанных в пл. 2.3—2.18.
- 2.3. Точность базирующей конической поверхности шпинделя бабки изделия:
- а) зазор $A^{+\Delta}$ между торцом фланца калибра и торцом шпинделя;

2 - 1685

б) прилегание конуса калибра не краске.

Черт. 2

Табляна 2

Наибольний диаметр обра-	Номер	прилегание,	на завор, мки; . %, не менес, класса точности	
батываемого колеса, мм	пункта	В	Α	
До 125	1.18	+55	+55	
до 120	1.16	80	85	
Cs. 125 no 200	1.La	±75	+75	
Ca. 129 no 200	1.16	80	85	
Св. 200 до 500	1.1a	+75	+75	
CB. 200 AV WAY	1.16	80	85	
Св. 500 до 800	1.1a	+100	+100	
CS. SOU AU BUU	1.16	80	85	

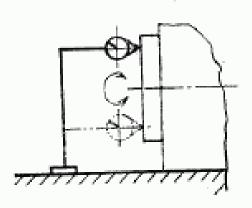
Примечания:

Разрывы окращенных мест во окружности допускаются не более 20% ес дляны. Длины неокращенных мест вдоль образующих — не более 5 мм.

 Наличие неокращенных мест на длине конуса 10 мм от переднего торца не допускается.

В отверстие шпинделя 1 (черт. 2) бабки изделия вводят калибр 2 с определенным маркированным значением зазора А. Измеряют фактический зазор А между торцом фланца калибра и торцом шпинделя.

Затем калибр вынимают и всю его контрольную поверхность покрывают слоем краски. Толщина слоя краски не должна превышать 5 мкм по ГОСТ 2848. Вновь вводят калибр в отверстне шпинделя, поворачивают его в обе стороны на угол 90° и вынимают. Визуально оценивают площадь прилегания калибра.


Отклонения равны:

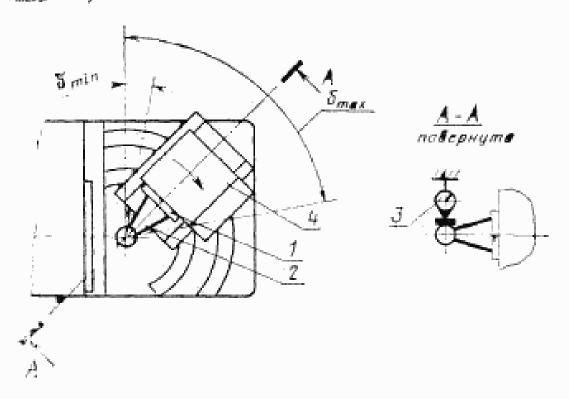
 а) разности между фактическим размером A и его значением, указанным на калибре;

б) отношению площади поверхности прилегания к площади

рабочей поверхности калибра.

2.4. Торцовое биение шпинделя бабки изделия

Черт. 3


J. S. J.

		1202543	
Наибельший диаметр обрабаты- васмого колеса, мм	Допуск, мим, для ставков класса точности		
	В	A.	
До 200 Св. 200 » 800	2,5 3,5	2	

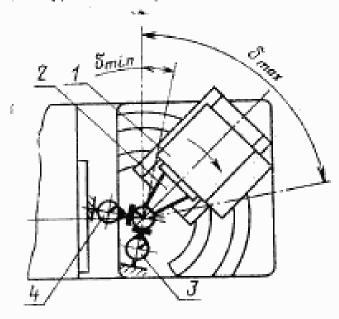
Измерения -- по ГОСТ 22267, разд. 18, метод 1 (черт. 3)

Измерительный наконечник показывающего измерительногоприбора должен отстоять от оси вращения на расстоянии не менее 0,4 диаметра торцовой поверхности шпинделя бабки изделия.

2.5. Постоянство положения оси шпинделя бабки изделия по высоте при повороте бабки изделия (для станков с углом поворота $\delta_{\max} \ge 30^{\circ}$)

Черт. 4

Таблица 4


Нанбольший диаметр обра-	Допуск, мим, для станков класса точности	
батываемого колеса, мія	В	Α
Ho 200 Ca. 200 > 320 > 320 > 500 > 500 > 800	10 12 16 20	8 10 12 16

В отверстие шпинделя I (черт. 4) бабки изделия d вставляют контрольную оправку 2 с шариком. Бабку изделия по измерительному устройству осевой установки устанавливают на маркированный на оправке размер от центра шарика до торца шпинделя бабки изделия. Бабку изделия устанавливают на наименьший угол δ_{\min} и закрепляют винтами. Показывающий измерительный прибор 3 закрепляют неподвижно так, чтобы плоскость его наконечника касалась шарика сверху и была перпендикулярна оси пово-

рота бабки изделия. Бабку изделия поворачивают на угол от δ_{\min} до δ_{\max} и отмечают величину изменения показания измерительного прибора по сравнению с показанием при δ_{\min} в среднеми крайнем положении бабки изделия при затянутых винтах крепления.

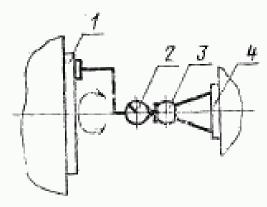
Отклонение равно наибольшему изменению показаний измерительного прибора.

- 2.6. Пересечение оси поворота бабки изделия с осью шпиндельной головки:
 - а) в нулевом (исходном) положении шпиндельной головки;
- б) в крайних гипоидных положениях шпиндельной головки (для станков с гипоидным смещением шпиндельной головки)

Черт. 5.

Таблина 5

Нанбольший диаметр			и, для стинков точности	
обрабатываемого колеса, мм	пункта	В	A	
До 200	1.6a	10	8	
	1.65	12	10	
Св. 200 до 320	1.6a 1.66	12 16	10	
Св. 320 до 500	1.6a	16	12	
	1.66	20	16	
Св. 500 до 800	1.6a	20	16	
	1.66	25	20	


Установка рабочих органов станка и оправки 2 (черт. 5) аналогична установке при проверке по п. 2.5. Бабку изделия устанавливают на наименьший угол поворота δ_{\min} . Для станков с гинондным смещением шпиндельную головку I устанавливают в иулевое положение. Показывающие измерительные приборы 3 и 4 устанавливают так, чтобы их плоские измерительные наконечники касались шарика оправки, при этом направление измерения прибора 3 должно сорпадать с осью шпинделя бабки изделия, а прибора 4 должно быть перпендикулярно оси шпинделя и оси поворста бабки изделия при установке ее на угол δ_{\min} .

Бабку изделия поворачивают на угол от δ_{min} до δ_{max} с предварительной выборкой зазоров. Перемещают бабку изделия в осевом направлении, добиваясь наименьших показаний измерительных приборов и записывают их показания в крайних и среднем фиксированных угловых положениях (при затянутых винтах).

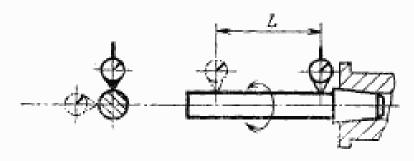
Для станков, имеющих гипоидное смещение, измерение производят также в двух крайних положениях шпиндельной головки (при затянутых винтах) без изменения осевой установки бабки изделия.

Отклонение равно наибольшей алгебранческой разности показаний каждого измерительного прибора при различных угловых установках бабки изделия.

2.7. Осевое биение люльки

Черт. 6

Таблица 6

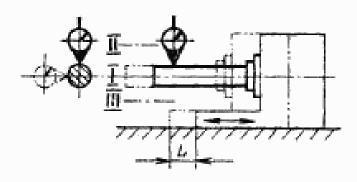

Нь на клыший диаметр обраба-	Допуск, мим, для станков		
чиваемого колога, ми	класса точности		
The state of the s	В	Α	
Ho 125	10	6	
Ca. 125 ≥ 200	12	10	
> 200 ≈ 500	16	12	
> 5.85 ≈ 800	29	- 16	

В отверстие шпинделя 4 (черт. 6) бабки изделия вставляют контрольную оправку 3 с шариком. Бабку изделия устанавливают так, чтобы ось вращения люльки пересекала центр шарика оправки. Показывающий измерительный прибор 2 укрепляют на торце люльки I так, чтобы его плоский измерительный наконечник касался шарика оправки. Направление измерения должно совпадать с осью люльки.

Измерения проводят при медленном повороте в направлении рабочего хода люльки на угол равный приблизительно 50°. На станках для колес с круговыми зубьями измерения проводят в трех положениях на всей рабочей зоне качания люльки, на станках для колес с прямыми зубьями — в одном положении.

Отклонение равно наибольшей алгебранческой разности показаний измерительного прибора при одном измерении.

- 2.8. Радиальное биение конического отверстия швинделя бабки изделия:
 - а) у торца;
 - б) на расстоянии L


Черт. 7

Табляца 7

Неибольший диаметр обра-	Номер дунута L, мы	Допуск, мам. для станков класся точноств		
батываемого колеса, мм	лункта	L, MM	· в	А
До 125	1.8a 1.86	- 75	2,5 3,5	1,5 2
Св. 125 до 200	1.8a 1.86	150	2.5 4	2 2,5i
Св. 200 до 500	1.8a 1.86	150	3.5 5	2 3,5
Св. 500 до 800	1.8a 1.86	150	$\frac{\Phi}{\epsilon}$	2,5 4

Измерения - по ГОСТ 22267, разд. 15, метод 2 (черт. 7).

2.9. Параллельность направления перемещения бабки изделия к оси ее шпинделя в плоскостях: проходящей через ось поворота бабки изделия и перпендикулярной ей (станки с гипоидным смещением шпиндельной головки проверяют в нулевом (исходном) I и крайних II и III гипоидных положениях шпиндельной головки)

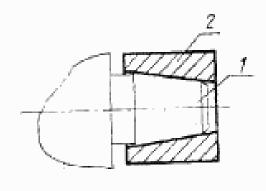

Черт. 8

Таблица 8

Наибольший диаметр обра- батываемого колеса, мы	Ĺ, ым		Для станжев гочности А
До 125	75	8	6
Св. 125 > 200	150	10	8
> 200 > 500	260	12	10
> 500 > 800	300	16	12

Измерения по ГОСТ 22267, разд. 6, метод 36 (черт. 8). Измерения проводят в каждом положении шпиндельной головки и в каждой плоскости при затинутых винтах крепления.

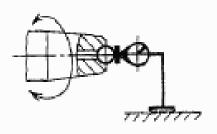
2.10. Точность базирующей наружной конической поверхноств шлифовального шлинделя

Мерт. 5

Наибольший диаметр обраба-	Домуск, прилегание, %, не межее,		
тываемого колеса, им	для станков класса точности		
	ь	Λ	
До 200	80	85	
Св. 200 > 800	80	85	

Примечания:

 Разрывы окращенных мест по окружности допускаются не более 20% ее длины. Длины неокращенных мест вдоль образующих не более 5 мм.


Наличие неокрашенных мест на дляне конуса 5 мм от большего днаметра ве допускается.

На конус I (черт. 9) шлифовального шпинделя надевают кольцо — калибр 2, конусное отверстие которого предварительно покрывается тонким слоем краски. Толщина слоя краски не должив превышать 5 мкм по ГОСТ 2848.

Калибр поворачивают в обе стороны на угол 90° и снимают. Визуально оценивают площадь поверхности прилегания конусашпинделя.

Отклонение равно отношению площади поверхности прилегания к площади рабочей поверхности конуса шпинделя.

2.11. Осевое биение шлифовального шпинделя

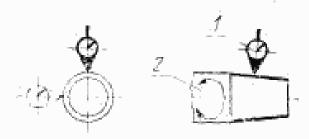

Черт. 10

Таблица 100

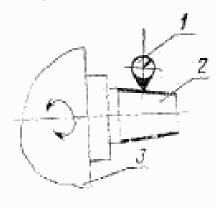
Наибольший диаметр обра-	Донуск, мкр, для станжов класса точности		
батываемого колеса, мм	В	A	
До 200 Св. 200 > 500 > 500 > 800	2 2.5 3	1 1.5 2	

Измерения - по ГОСТ 22267, разд. 17, метод 1 (черт. 10).

2.12. Биение базирующей поверхности шлифовального шпимделя в направлении перпендикулярном образующей

Черт. 11

Таблица 11.


Наибольший диаметр обра-	Допуск, мем, для станков		
батываемого жолеса, им	класса точности		
батываемого волеса, ит	В	A	
До 200	2.5.	1.5	
Св. 290 » 500	3	2	
» 500 » 800	4	2,5	

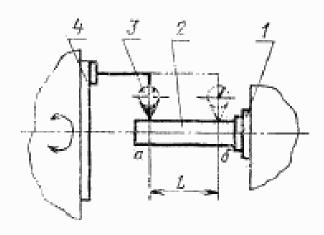
На станке укрепляют показывающий измерительный прибор *I* (черт. 11), так чтобы его измерительный наконечник касался наружной базирующей поверхности шлифовального шпинделя 2 и был направлен к оси этой поверхности перпендикулярно образующей. Измерения проводят при вращении шлифовального шпинделя в рабочем направлении.

Биение равно наибольшей алгебраической разности показаний

измерительного прибора в каждом его положении.

2.13. Соосность люльки и шлифовального шпинделя (для станков, шлифующих колеса с круговыми зубьями и меющих возможность поворота люльки на 360° и установки соосно люльки и шлифовального шпинделя)

Черт. 12


Накоольший диаметр обра-	Допуск, мкм, для станков	
бативаемого колеса, им	класса точности	
	В	Α
До 208	25	20
Ca. 200 > 320	32	25
> 320 > 500	40	32
> 500 > 800	50	40

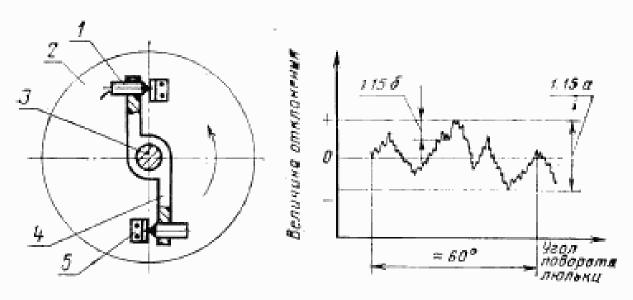
Показывающий измерительный прибор *I* (черт. 12) укрепляют так, чтобы его измерительный наконечник касался перпендикулярно образующей базирующей поверхности шлифовального шпинделя 2 или цилиндрической поверхности на эксцентрике (салазках) соосной со шлифовальным шпинделем.

Шлифовальный шпиндель 2 устанавливают в соосное с люлькой 3 положение так, чтобы алгебранческая разность показаний измерительного прибора при повороте люльки на 360° была наименьшей.

Отклонение равно половине алгебраической разности показаний измерительного прибора.

- 2.14. Соссность люльки и шпинделя бабки изделия (для станков с установкой бабки изделия на угол 90°):
 - а) в плоскости, проходящей через центр станка;
 - б) на расстоянии L от центра станка

 $M_{\rm GP_1} = 13$


Наибольший диаметр обра-	Номер жункта	L, MHC	Допуск, мкм. для став- ков класса точности	
бетываемого волеса, мы			В	A
До 125	1.14a 1.146	75	4 6	2,5
Св. 125 до 200	1.14a 1.146	150	5 8	3 5
Св. 200 до 500	1.14a 1.146	150	6 10	6
Св. 500 до 800	1.14a 1.146	150	8 12	5 8

В отверстие шпинделя I (черт. 13) бабки изделия вставляют контрольную оправку 2. Бабку изделия устанавливают на угол 90°. На станках, имеющих гипондное смещение, шпиндельную головку устанавливают в нулевое положение. На торце люльки 4 укрепляют показывающий измерительный прибор 3 так, чтобы его измерительный наконечник касался цилиндрической поверхности оправки последовательно в положении a (в плоскости, проходящей через центр станка) и в положение b (на расстоянии b от центра станка). Перемещение измерительного наконечника должно происходить перпендикулярно поверхности оправки. Люльку вместе с измерительным прибором медленно поворачивают вручную на угол около 50°. Бабку изделия выставляют так, чтобы показания измерительного прибора были наименьшими.

Измерения проводят в направлении рабочего хода люльки: на станках для колес с круговыми зубьями в трех положениях на всей рабочей зоне качания; на станках для колес с прямыми зубьями в одном положении.

Отклонение равно наибольшей алгебраической разности показаний измерительного прибора в каждом положении.

- 2.15. Точность связанных поворотов люльки и шпинделя бабки мзделия (для станков, имеющих возможность соосной установки люльки и шпинделя бабки изделия и настройки синхроиного врашения шпинделя бабки изделия и люльки):
 - а) за один рабочий цикл;
 - б) местная

Черт. 14

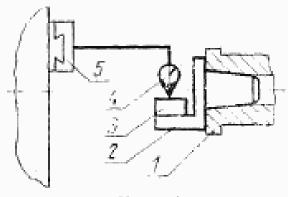
Таблица 14

Наибольший дваметр обра- батываемого колеса, им	Номер пункта	Допуск, угловые секунды, для станков класса точности	
		В	А
До 125	1.15a	40	28
	1.156	16	10
Св. 125 до 200	1.15a	32	20
	1.156	12	8
Св. 200 до 320	1.15e	28	18
	1.156	10	6
Св. 320 до 580	1.15a	20	14
	1.156	8	5
Св. 500 до 800	1.15á 1.156	18 6	10

Устанавливают: возможно точную соосность шиниделя 3 (черт. 14) бабки изделня и люльки 2; сменные зубчатые колеса деления для числа шлифуемых зубьев колеса 35...45; сменные

зубчатые колеса обката, обеспечивающие расчетное синхронное вращение шпинделя бабки изделия и люльки.

На шпинделе бабки изделия закрепляют коромысло 4, в котором на равных расстояниях от оси шпинделя бабки изделия установлены два датчика перемещения 1 так, чтобы их измерительные наконечники касались упоров 5 и были перпендикулярны им. Рабочие плоскости упоров, прикрепленных к люльке, должны лежать в одной диаметральной плоскости. Измерительное устройство должно обеспечивать алгебраическое суммирование измерений обоих датчиков перемещений и графическую запись результата в масштабе. Люльку поворачивают на наименьшей рабочей скорости на угол около 60°.


Измерения проводят в направлении рабочего хода люльки: на станках для колес с круговыми зубьями в трех положениях на всей рабочей зоне качания; на станках для колес с прямыми зубьями — в одном положении.

Отклонения равны:

- а) наибольшему изменению относительного углового положения люльки и шпинделя бабки изделия, выраженному в масштабе записи расстоянием между крайними точками графика в направлении оси «ведичина отклонения»;
- б) наибольшему единичному изменению углового положения люльки и шпинделя бабки изделия, выраженному в масштабе записи наибольшим расстоянием между двумя соседними точками изменения направления линии графика, отсчитанными в направлении оси «величина отклонения» при угле поворота не более 6°.

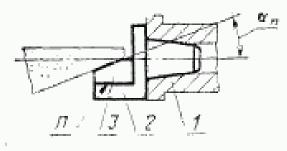
Примечания:

- Допускается проведение измерения одним дотчиком перемещения с исключением влияния несоосности людьки и шпинделя бабки изделия.
- При отсчете по оси «величина отклонения» в случае измерения двумя датчиками одновременно фактическое отклонение будет в два раза меньше зафиксированного графиком.
- Прямолинейность перемещения ползунов (для станков, шлифующих колеса с прямыми зубьями, шлифовальными кругами, движущимися вдоль зуба поступательно)

Черт. 15

Наибольшая длина перемещения полнунов; мы	Дожуск, мкм. для станков класса точности	
	В	Á
До 40 Св. 40 > 60 > 60 × 100 > 100 > 160	3 4 5 7	2 2.5 3 4

Цель обката и механизи бочкообразования (при его наличии) отключают. Бабку изделия по измерительному устройству станка устанавливают на угол 90°. В отверстие шпинделя 1 (черт. 15) бабки изделия вставляют контрольную оправку 2 со ступенчатым фланцем, на котором укрепляют поверочную линейку 3 так, чтобы рабочая поверхность линейки была примерно параллельна плоскости направляющих поворота бабки изделия. На ползуне 5 люльки укрепляют показывающий измерительный прибор 4 так, чтобы его измерительный наконечник касался и был перпендикулярен рабочей поверхности линейки.


Люльку или шпиндель бабки изделия поворачивают до тех пор, пока при перемещении ползуна на наибольшую длину хода, показания измерительного прибора станут одинаковыми в начале и конце хода.

Измерения проводят, вновь перемещая ползуны на наибольшую длину хода.

Отклонение для каждого ползуна равно наибольшей алгебраической разности показаний измерительного прибора на всей длине перемещения ползуна.

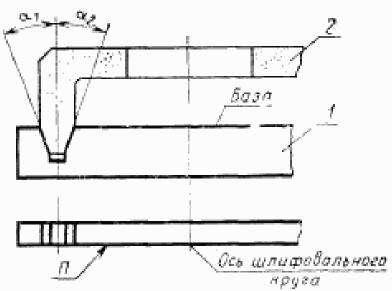
Примечание. Поверочная линейка может быть установлена не на оправке, вставленной в шиниделе бабки изделия, а на любой части станка, неподвижной в процессе измерения и имеющей достаточную жестность.

- 2.17. Точность профиля контрольной планки, прошлифованной на станке (для станков, шлифующих колеса с прямыми зубьями):
 - a) no yrлу α_n;
 - б) по прямолинейности

Mecr. 16

Навбольший диаметр эбра- батываемого колеса, им	Номер вункте	Допуск (угла в угловых секунцах; прямолинейности в мкм) для став- ков клиссов точности В. А
До 500	1.17a 1.176	3
C= E00 == 000	1.17a	
-Cm. 500 до 800	1.176	4

В отверстие шпинделя 1 (черт. 16) бабки изделия вставляют контрольную оправку 2 со ступенчатым фланцем, на котором прижлеплена контрольная планка 3. Бабку изделия устанавливают на угол 90°. Рабочие органы станка устанавливают так, чтобы направление перемещения ползуна шлифовального суппорта стало нараллельно плоскости П оправки. Правят шлифовальный круг м методом врезания без обката шлифуют контрольную планку.


Угол профиля измеряют универсальными средствами. Прямолинейность профиля проверяют на длине равной 1,2 m_{te} , где m_{te} наибольший внешний окружной модуль обрабатываемых зубчатых колес. Показания измерительного прибора в начале и конце длины измерения должны быть одинаковыми.

Номинальное значение a_n указывается в технических условиях на конкретную модель станка.

Отклонения равны:

- а) разности между фактическим и номинальным углами профиля;
- б) наибольшей алгебраической разности показаний измерительного прибора.

- 2.18. Точность профиля контрольной планки, прошлифованной на станке (для станков, шлифующих колеса с круговыми зубьями):
 - а) по углу α;
 - б) по прямолинейности

Черт. 17

Таблица 17

Наибольший диаметр обра- батываемого колеса, мм	Номер пункта	Допуск (угла в угловых секундах; прямолинейности, мкм) для стапись илассов точности В, А
До 320	1.18a 1.186	6
Св. 320 до 800	1.18a 1.186	8

Контрольную планку I (черт. 17) закрепляют неподвижно. База контрольной планки должна быть перпендикулярна оси люльки. Контрольная плоскость II планки должна быть совмещена с осью шлифовального круга. Допускаемое отклонение — 0,005 $D_{\rm min}$ где $D_{\rm min}$ — номинальный диаметр шлифовального круга. Толщина контрольной планки 0,02 . . . 0,05 $D_{\rm min}$.

Паз планки шлифуют методом врезания без обката. Допускается раздельное шлифование наружной и внутренней конической поверхностью шлифовального круга.

Номинальные значения α₁ и α₂ указываются в технических условиях на конкретную модель станка.

Измерения проводят в контрольной плоскости *П.* Углы профиля измеряют укиверсальными средствами. Прямолинейность про-

филя проверяют на длине равной 1,2 m_{te} , где m_{te} — наибольший внешний окружной модуль обрабатываемых зубчатых колес. По-казания измерительного прибора в начале и конце длины измерения должны быть одинаковыми.

Допускается устанавливать контрольную планку на шпинделе бабки изделия.

Отклонения равны:

- а) разности между фактическими и номинальными углами профиля;
 - б) наибольшей разности показаний измерительного прибора.

3. ТОЧНОСТЬ СТАНКА В РАБОТЕ

На станке шлифуют на чистовых режимах боковые поверхности зубьев образца — стального конического колеса. Твердость шлифуемых поверхностей 47...61 HRC₂.

Размеры образца-изделия:

$$d_{as} = (0,5...0,75)$$
 D : $b = (0,12...0,18)$ d_{as} ; $m_n = (0,6...0,75)$ $m_n \max$; $\delta = 55^{\circ}...75^{\circ}$; $\beta_n = 35^{\circ}$ (для конических колес с круговыми зубьями),

где D — наибольший диаметр обрабатываемых зубчатых колес;

 $d_{a\sigma}$ — внешний делительный диаметр;

тя — наибольший средний нормальный модуль;

т., тах — наибольший нормальный средний модуль обрабатываемых на станке зубчатых колес;

b — наибольшая ширина зубчатого венца;

наименьший угол делительного конуса;

β_п — средний угол наклона линии зуба.

Число зубьев образца-изделия не должно быть кратным передаточному числу делительной передачи бабки изделия.

Если измерительный прибор дает показания в линейных величинах, то пересчет в угловые величины проводится для внешнего делительного диаметра.

3.1. Точность положения профилей соседних зубьев. Разность соседних окружных шагов

Таблеца 18.

Наябольший диаметр обра- батываемого колеса, ым	Допуск, угловые сенуиды, для станков кларса точности		
	В	A	
До 125 Ca. 125 » 200 » 200 » 320 » 320 » 500 » 500 » 800	32 24 13 14	20 10 12 8	

Измерения проводят по обенм сторонам прафиля зубьев саетветствующим измерительным прибором.

Погрешность равна наибольшей разности между соседними **ок**ружными шагами.

Точность положений профилей зубьев на всей окружности. Накопленная погрешность окружного шага

Таблица 19

Навбольший диаметр обра- батываемого колеса, мы	Долуск, угловые секунды, для станков класса точности		
	A	В	
До 125 Cs. 125 > 200 > 200 > 320 > 320 > 500 > 500 > 800	80 60 45 34 25	50 36 28 20 16	

Измерения проводят по обеим сторонам профиля зубьев измерительным прибором, определяющим точность положения профилей непосредственно или с последующим пересчетом.

Погрешность равна наибольшей алгебраической разности накопленных погрешностей окружных шагов одноименных сторов профилей зубьев по всей окружности колеса.

3.3. Шероховатость обработанной поверхности

Наибольшее значение параметра шероховатости по ГОСТ 2789 при наибольшем диаметре обрабатываемого зубчатого колеса до 800 мм для станков класса точности $B-R_a$ 1,0 мкм, класса точности $A-R_a$ 0,63 мкм.

Проверку параметра шероховатости обработанной поверхности проводят по обеим сторонам профиля зубьев при помощи умиверсальных средств измерения шероховатости.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВВЕДЕН Министерством станкостроительной и инструментальной промышленности СССР

РАЗРАБОТЧИКИ

- А. Н. Байков, Ю. А. Архипов, Н. Ф. Хлебалин, Л. А. Орман, Н. С. Ермакова
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕИСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 02.02.90 № 138
- 3. Срок проверки 1999 г., периодичность проверки 10 лет
- 4. B3AMEH ГОСТ 16471-79 и ГОСТ 13142-83
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НГД, на которий дана семлиа	Номер пункта
FOCT 8—82	2.1
FOCT 2323—76	1
FOCT 2789—73	3.3
FOCT 2848—75	2.3. 2.10
FOCT 17547—80	1
FOCT 22267—76	2.4, 2.8, 2.9, 2.11

Редактор А. Л. Владимиров Технический редактор В. Н. Прусокова Корректор А. М. Трофимова

Сдано в наб. 10.02.90 Поди; в печ. 21.05.90 1,5 усл. веч. л. 1,5 усл. вр.-отт. 1.09 уч.-изд. д. Твр. 10000

Ордена «Зива Почета» Издательство стандартов, 123557, Москва, ГСП, Новопросневскай пер., 3. Тып. «Московский печатынк». Москва, Ляяна пер., 6. Зак. 1683

