

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПЕРЕДАЧИ ЗУБЧАТЫЕ ЦИЛИНДРИЧЕСКИЕ МЕЛКОМОДУЛЬНЫЕ С ЧАСОВЫМ ПРОФИЛЕМ

ТИПЫ, ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ, ДОПУСКИ

ГОСТ 13678—73

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

Москва

Группа Г15

ГОСУДАРСТВЕННЫЯ СТАНДАРТ СОЮЗА ССР

ПЕРЕДАЧИ ЗУБЧАТЫЕ ЦИЛИНДРИЧЕСКИЕ МЕЛКОМОДУЛЬНЫЕ С ЧАСОВЫМ ПРОФИЛЕМ

Типы, основные параметры и размеры, допуски

ГОСТ 13678-73

Cylindrical small module gear pairs with watch profile. Types, basic parameters and dimensions, tolerances B38M6H FOCT 13678—68

Постановлением Государственного номитета стандартов Совета Министров СССР от 3 августа 1973 г. Не 1911 срои введения установлен

c 01.01.75

Постановлением Госстандарта СССР от 30.07.84 № 2681 срок действия продлен

до 01.01.90

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на цилиндрические зубчатые передачи с числом зубьев зубчатых колес до 100 и модулем от 0,05 до 1 мм.

1. ТИПЫ, ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

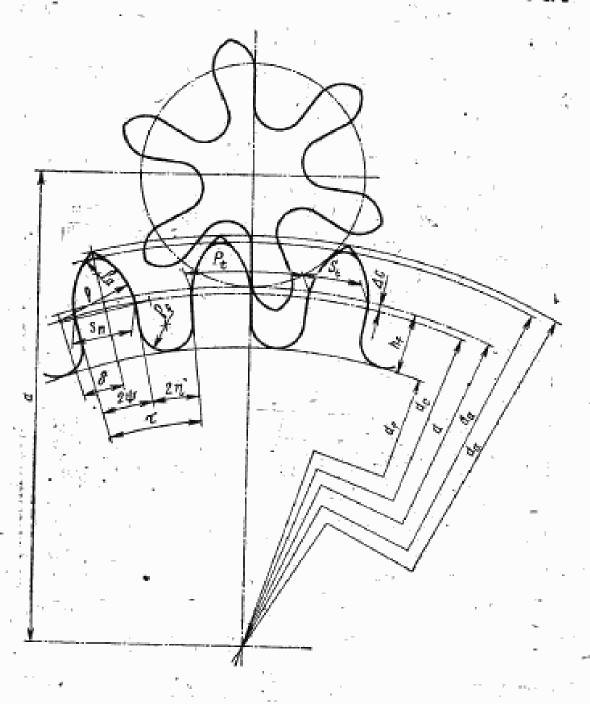
 Зубчатые передачи с часовым профилем должны изготовляться двух типов:

зубчатые передачи, в которых ведущими являются колеса,

а ведомыми — шестерни;

2 — зубчатые передачи, в которых ведущими являются шестерни, а ведомыми — колеса, и реверсивные зубчатые передачи.

1.2. Модули т должны соответствовать указанным в табл. 1.


 1.3. Расчет геометрических параметров и размеров зубчатых колес и передач, указанных на чертеже, приведен в табл. 2.

Издание официальное

Перепечатка воспрещена

Переиздание. Январь 1987 г.

© Издательство стандартов, 1988

Тa	6.4	e n	4	- 1
1 24	10 A	- HS - 114	а.	

Min	ДУЛЯ	270	NAME OF
THE PARTY	ar years	64.64	170

	іой ряд	0.05		0,055		0,06		0,065	
1	2-й ряд	Name .	0.0525		0,0575		0.0625		0,06751

Продолжение табл. 1

	The second		and the second second					
1.5 000	0.07		0.075		0.08		0.0851	
1.w hww	wyon .		140,000,00		40,000		- Company	
9.4 mag		0.0795		40.0775	-	0.0825		0.0875t
т и ряд ј		Uyur Au - I		MANUEL OF I		Distriction of		ALCOHOL: MY

Продолжение табл. 1

4				T					
	1-й ряд	0,09		0.095	p	1,0	· -	0,11	
	2-й ряд		0.0925		0.0975		0,105		0.1151
- 4									

Продолжение табл. 1

1-й ряд	0,12	-	0,13		0.14	-	0,15	
2-й ряд		0.125		0,135	The part	0,145		0.155

Продолжение табл. 1

	1-й ряд	0,16 -		0,17		0,18		0,2		
I	2-й ряд	-	0.165	_	0,175		0,19		0.21	

Продолжение тоба. 1

1-й ряд	0,22		0,25		0,28	0,3		0,34
2-й ряд		0,24		0.26		i	0,32	

Продолжение табл. 1

I-й ряд	0,36		0.4	_ —	0,45		0,5	
2-й ряд		0,38	. —	0.42	-	0.48	·	0,53

Продолжение табл. І

							- F	-	
i	1-й ряд		0,6			0.7		0.8	
1	2-й ряд ∣	0.56		0.63	0.67		0.75		0.85

Продолжение табл. 1

			1
I-jā paģ	0.9		1
2-й ряд	person	0,95	!

Примечания:

 Первый ряд следует предпочитать второму.
 Допускается применение модулей, не предусмотренных в табл. 1, для зубчатых передач соосных механизмов.

Таблица 2

Расчет геометрических шараметров и размеров зубчатых номес и передач

		и передач
Наименование параметра	Обоз- наче- ние	Формулы и указания
1. Межосевое расстояние	a.	$a=\frac{(z_1+z_2)\ m}{2}$
2. Делительный диаметр	d	d=zm
3. Окружной мас	p.	$pt = \pi m$
4. Угловой шаг	T	τ <u>360°</u>
 Раднус кри- визны профиля головки зуба 	0	Q−Q*m, где Q* — по табл. 7 и 8
6. Смещение окружности цент- ров	Δε	$\Delta_{\mathrm{e}} = \Delta_{\mathrm{e}}^{\bullet} m,$ где $\Delta_{\mathrm{e}}^{\bullet}$ — во табл. 7 и 8
7. Диаметр ок- ружности центров	d _o	$d_{\phi} = d - 2\Delta_{\phi}$
8. Диаметр ок- ружности вершин	d _a	$d_{a} = d_{c}\cos\delta + \sqrt{4\varrho^{2} - d_{c}^{2}\sin^{2}\delta},$ где $\delta = \sec\cos\frac{d^{2} + d_{c}^{2} - 4\varrho^{2}}{2}$
	- "	$s_1 - \text{по табл. 3}$ При скруглении вершии зубьев колеса $d_{a_2} = d_{c_2} \cos \delta + 2q_{a_2} + \sqrt{\frac{4(q_2 - q_{a_2})^2 - d_{c_2}^2 \sin^2 \delta}{2q_{a_2} + q_{a_2}^2 - q_{a_2}^2 \sin^2 \delta}}$ где $q_{a_2} = q_{a_2} m$, $q_{a_2} = \text{по табл. 4}$ Велична коэффициента радвуса скругления вермы зуба колеса q_{a_2} назначается по табл. 4 в ависимости от числа зубьев шестерии z_1
6. Смещение окружности центров 7. Днаметр окружности центров 8. Днаметр окружности центров	d _o	$A_0 = \Delta_{\mathfrak{S}}^* m$, $A_0 = \Delta_{\mathfrak{S}}^* m$

Наименование параметра	на че- па че-	Формулы и указания
9. Диаметр ок- зужности владин	dı	$d_t\!=\!d\!-\!2h_{\frac{1}{4}}^{*}m.$ где $h_{\frac{1}{4}}^{*}-$ во таба. 5
. 10. Окружная голщина зуба	St	$s_1 = s_1^* p_1$
11. Толщина зу- ба по общей кор- мали	sw	$s_{\mathbf{W}}=2\mathbf{Q}-d_{\mathbf{c}}\sin\delta$
12. Половина угловой толщины зуба	ψ	Для колес зубчатых передач типов 1 и 2 и шес терен зубчатых передач типа 2 $\psi = \arcsin{-\frac{2\varrho}{d_0}} - 8$
		Для шестерен зубчатых передач тапа 1
		$\psi = \arcsin \frac{2\varrho}{d} - 2 \arcsin \frac{\varrho}{d} + \frac{s_1 \tau}{2}$
13. Половная угловой шираны впадниы	η	$\eta = \frac{\tau}{2} - \psi$
 Радиус кри- визны переходной кривой зуба 	Q:	$q_t = 0.5d_t \frac{\sin \eta}{1 - \sin \eta}$
15. Радвальный вазор	c	$c = a - 0.5 (d_c + d_f)$

Примечания: 1. Размеры шестерен зубчатых передач типа 1 при m=1 приведены табл. 6.

2. Значения коэффициентов Q* и Δ_c для колес зубчатых передач типа 1 приведены в табл. 7, а для колес и шестерен зубчатых передач типа 2 — в табл. 8.

Число зубъев зубчатого нолеса з	Коэффициент толицины зуб тых пере	а <i>в</i> , колес шестерев вуб иляч типов
	1,	2
До 10	0,33	0,40
Св. 10 до 20	0,40	
Св. 20	0,50	0,42

Таблица 4

Число зубьев шестеряв и,	.Коэффициент раднуса скр леса р _{ай} зубчать	угления вершины зуба ко- ых передач типов
	1	
6	0.35	0,40
7	0,35	0,30
Св. 7 до 10	0,25	,
Св. 10 до 12	0,30	(0,30)
Св. 12	(0,30)	

Примечание. Величны в скобках являются рекомендуемыми.

Таблица 5

	Коэффициент высоты ножки суба h					
Число зубъем 2	колес в шестерев вубчатых передач типь 2	крлес вублатых пере- дач типа 1				
8	1,49	A. I				
9	1,60					
Св. 9	1,70	1,57				

Размеры шестерен зубтатых передач тина 1 hpи т=1, мм

		4						1				1
O60003-		-				Theas	Cacato sydees mex	mecalepair x	-			
definite	w	že	80	6	. 01	\$	51	41	15	91	18	82
B	9	7	80	G.	. 10	11	12	14	15	16	18	20
ďį	7,3436	8,3454	7,3436 8,3464 9,3464	10,3482	11,3480	12,6024	13,6052	15,6044	16,6048	17,6060	19,6056	21,6062
Į.	2,92	3,87	4.44	5,32	6,29	7,20	8,40	9,84	10,63	11,66	13,58	15,32
0	0,70	0,70	0,70	0,70	0,70	0,83	683	0,83	0,83	0,83	0,83	0,83
ō	0,755	0,784	9,773	0,781	0,821	6,728	0.776	0,762	0,760	0,775	0,779	\$640
ij	1,047	1,047 1,047	1,047	1,047	1,047	1,257	1,257	1,257	1,257	1,257	1,257	1,257

FOCT 13678--- FE C. B

Таблица 7

Число зубъев • Шестерии 21	Обозначения		Число зубьев кол	èca
merichen El		от 20 до 40	от 41 до 70	от 71 до 100
6	Δ.	0,29	0,30	0,31
	ρ*	1,90	1,95	2,00
7	Δ.	0,20	0,22	0,25
	o* *	2,00	2,05	2,10
8 -	Δ'c	0,18	0,20	0,22
	ρ*	2,10	2,15	2,20
9 (-	Δ.	0,20	0,21	0,22
	8	2,15	2,20	2,25
10	Δc	0,20	0,21	0,22
	6*	2,25	2,30	2,35
11	Δ.	0,20	0,21	0,22
	ρ*	2,35	2.40	2,45
12	Δe	0,18	0,19	0,20
		2,45	2,50	2,55
14	Δ.		0,16	1
	- C	2,55	2,60	2,65
16	Δc		0,15	
	p*	2,66	2,65	2,70
16 -	Δ		0,14	
	- e*		2,70	2,80
18 -	Δ,		0,12	
	-6.		2,80	2,90
200 —	Δ.		9,12	
i	e*		2,90	3,00

Таблица 8 Значения коэффициентов Δ_c^* и ρ^* для колес и шестерен зубчатых передач типа 2

Число зубаев z	Δc	0*
От 8 до 12	0,16	1,90
св. 12 до 20	0,18	1,95
св. 20 до 50	0,21	2,00
св. 50	0,24	2,10

Примечание. Величина коэффициента р* для колес должна быть при числах зубьев шестерен от 8 до 12 на 0,2 менее указанной в таблице.

2. ДОПУСКИ

 Устанавливаются шесть степеней точности зубчатых колес и передач, обозначаемых в порядке убывания точности цифрами 1, 2, 3, 4, 5, 6.

 Примечавне. Для степени точности 1 допуски и отклонения не регламентируются.

2.2. Допуски и отклонения для различных степеней точности устанавливаются по табл. 9—16.

Таблица 9

Y	Предельные отклонения межосевого расстояния $\pm f_a$, мкм							
7			Межосевс	е расотоли	е, им			
Степень точности	до З	св. 3 до 6	св. 6 до 10	св. 10 до 18	св. 18 до 30	св. 30 до 50	св. 50 до 70	св. 70
2	7	8	10	12 -	14	17	20	24
3 -	- 10	12 -	14	1.7	20	24	28	35 -
4	14	17	20	24 -	28	- 35	42	50
5	20	24 -	28	35 -	42	50	60	72
6	28	35 -	42	50	60	72	85]	100
3 4 5	10 14 20	12 - 17 - 24 -	14 20 28	17 24 35 -	20 28 42	24 35 50	28 42 60	35 50 75

Таблена 10

Степень гочности	Предельные отвлонения шега ±/ _{р t} , мкм	
2	4	_
4	6	_
<u>5</u>	7 9	

Таблица 11

Допуски на радиальное биение окружности вершии шестерен $F_{\rm dat}$, мкм

Стешень		Модуль т, мы					
точности .	от 9,06 до 0,1	св. 0,1 до 0,2	св. 0,2 до 0,4	св: 0,4-до 0,6	св. 0,6 до 1		
2	7.	10	15	20	30		
3	10	15	20	30	40		
4	15	20	30	4.0	60		
5			40	-60	.80		
6		p	.50	80	120.		

Таблица 12

Допуски на радиальное биение окружности вершин колес F_{data} мкм

Степень	l la	Диамет	р окружности ве	ршян, мм
точности	Можуль т. им	до 5	св. 5 до 30	св. 30
	От 0,05 до 0,1	8	10	Prod.
	Св. 0,1 до 0,15	10	12 .	
. 2	Св. 0,15 до 0,3	12	15	20
•	Св. 0,3 до 0,6		.17	. 25
<i>i</i>	Св. 0,6 до 1		20	35
	От 0,05 до 0,1	10	: 12	mia.
1	Св. 0,1 до 0,15	12	_ 15	
3	Св. 0,15 до 0,3	15	17	. 25
	Св. 0,3 до 0,6		20	30 -
	Св. 0,6 до 1		25	40
	От 0,05 до 0,1	15	20	man, 11
· · · · ·	Св. 0,1 до 0,15	20	25	
4	Св. 0,15 до 0,3	25	30	
	Св. 0,3 до 0,6		. 40	50
	- Cв. 0,6 до I	-	50	65
	От 0,05 до 0,1	25 -	30	-
٠	Св. 0,1 до 0,15	30	-35	
5	Св. 0,15 до 0,3	35	45	
	Св. 0,3 до 0,6		55	
	Св. 0,6 - до 1	·	> 70	85
6	От 0,3 до 0,6		90	
· u	Св. 0,6 до 1	-	100	120

. Таблица 13 Предельные отклонения диаметра вершин вубчатых колес — $A_{\rm da}$, мкм

			Модуль т, ын					
Степень. почности	Наименование	от 0,05 до 0,1	св. 0,1 до 0,15	св. 6,15 до 0,3	cs. 0,3 go 0,6	cis. 0,6 20 1		
2	Колесо, шестерия	, 10	12	4.00	i.			
2	Триб	12	15	17	20	24		
3	Колесо, шестерня	12	15	-		20		
3	Триб	14	18	20	24	30		
4	Колесо, шестерня	15	20		200	45		
	Триб	18	22	28	35	45		
	Колесо, шестерия	20	25					
5	Тряб -	22	28	40	50	60		
	Колесо, шестерия			,		-		
6	Триб	-	-		60	75		

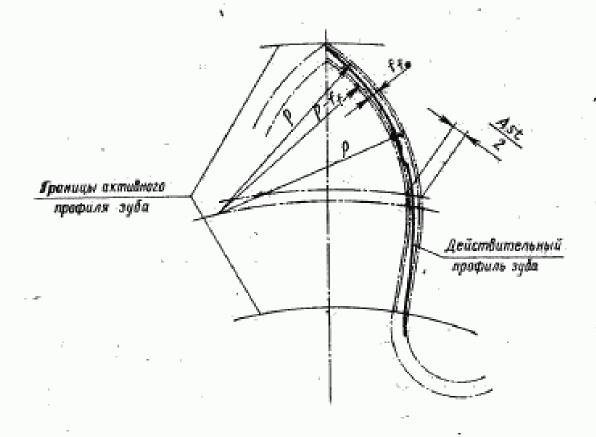
Tа б л и ц а 14 Предельные отклонения дмаметра впадии зубчатых колес — A_{4t} , икм

		Модуль т, ым				
Степень фочности	Наименование	or 0,05 no 9,1	ся. 0.1 до 0.15	ca. 0,15 20 0,3	ca. 0.3 no 0.6	св. 0,6 до 1
2	Колесо, шестерня	14	18		30	35
	Триб	16	20	25		
3	Колесо, шестерия	22	28		45	55
	Триб	2 5	30	35		
4	Колесо, инестерня	30	35		60	- 75
	Триб	35	40	50		
.5	Колесо, шестерня	35 45	45	55	75	100
6	Триб Колеса, шестерия Триб	_	-		100	120

. Таблица 15 Предельные отклонения окружной толщины зуба — $A_{\rm et}$, мкм

_	Модуль т, им					
Степень точности	от 0.05 до 0.1	са. 0,1 до 0,15	. св. 0,15 до 0,3	св. 0.3 до 0.6	св. 0,6 до 1	
2	7	10	12	15	20	
3	10	12	15	20	25	
4	12	15	20	25	30	
5	15	20_	25	30	35	
6 :	_			35	45	

Таблица 16


Допуски на погрешность профиля fr. мкм

	Модуль т, им						
Степевъ точности		св. 0.1 до 0.15	св. 0,15 до 0,3	св. 0,3 до 0,6	св. 0,5 до 1		
2	2	3	4	6	8		
3	3	-4	6.	8	11		
4	4	6	8	11	14		
5	5	7	10	14	18		
6	jenna 			18	. 24		

Термины, обозначения и определения для зубчатых передач с часовым профилем

. Термян .	Обозначение	Определение
1. Окружность профиля головки зуба	_	Окружность, ограничнвакицая про- филь головки эуба
2. Раднус кривизны про- филя головки зуба	ρ	филь толовки зуса.
3. Коэффициент раднуса кривизны профиля головки зуба	ρ*	Радиус кривизны профиля головки зуба при m=1 мм
4. Окружность центров	_	Окружность, на которой расположе- ны центры раднусов кравизны про- филя головки зуба
Диаметр окружности центров	d₀ .	- white roncolled Syva
6. Радиус окружности центров	ro	-
7. Смещение окружности центров	- Δe	Расотояние по раднусу между дели- тельной окружностью и окружностью центров
6. Коэффициент смещения окружности центров	Δ·	Смещение окружности центров при
9. Угловая толщина зуба	2ψ-	Угол между радиальными прямыми, ограничивающими пожку зуба
 Угловая ширина впа- дины 	_2η	Угол между радиальными прямыми, ограничивающими впадину зубьев
11. Окружность скругления вершины зуба		Дуга окружности, сопрягающей про- тивоположные профили зуба на вер- шине
12. Радиус скругления вершины зуба	θa	
 Коэффициент раднуса скругления вершины зуба 	ρa	Радиус окружности скругления вер- шины зуба при m=1 мм
14. Отклонение диаметра вершин	-	Разность между действительным и неминальным диаметрами вершин
 14.1. Предельное отклоне- ине диаметра вершин 	-Ada	-
15. Отклонение диаметра впадин		Разность между действительным и номинальным диаметрами впадин
 Предельное отклоне- вне диаметра впадии 	⊢Aat.	
16. Раднальное биение ок- ружности вершин	****	Наибольшая в пределах зубчатого колеса разность расстояний от его рабочей оси до окружности вершии

Термия •	Обсана тевие	Определение
16.1. Допуск на радиаль- ное биевие окружности вер-	Fds	
17. Отклопение межосево- го расстояния		Разность между действительным и номинальным межосевым расстояни- ем
17.1. Предельные откло- нения межосевого расстоя- ния:	1	EN.
верхнее нижнее 18. Отклонение mara	+f4 J4	
		Разность между действительным и номинальным шагами по делительной окружности
18.1. Предельные отклоне- ния шага; верхнее	+fot	
нижнее 19. Отклонение окружной толщины зуба	—/ _{pt}	Разность между действительной и по- минальной толщиной зуба по дуге
19.1. Предельное отклоне- ние толщины зуба	Ast	делительной окружности —
20. Погрешность профиля зуба	-	Расстояние по нормали между дву- мя профилями, номинальным и бли- жайшим к нему эквидистантным,
-		между которыми размещается дейст- вительный активный профиль зуба (см. чертеж).
	·	Примечания: 1. Допуск на погрешность профи- ля располагается в пределах поля допуска на толщину зуба.
20.1. Допуск на погреш-	Į.	 Активный профиль включает дугу головки и прямолинейную часть ножки зуба
юсть профили		Nam.

Редактор В. С. Бабкина Технический редактор Э. В. Митяй Корректор С. И. Ковалева

«Сдано в наб. (4.05.87 Поди. в неч. 04.01.88 1,0 усл. п. л. 1,0 усл. кр.-отт. 0,78 уч.-язд. д. Тираж. 3000 Цена 5 коп.

Ордена «Знак Почета» Издательство ставдартов, 123840, Москва, ГСП, Новопреснаяский пер., д. 3. Вижьиюсекая типография Издательства стандартов, ул. Миндауго, 12/14. Зак. 2886.

