ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПРОДУКТЫ КРЕМНИЙОРГАНИЧЕСКИЕ

Методы определения массовой доли кремния

FOCT

Siticon organic products.

Methods for determination of silicon mass fraction

20841,2-75*

OKCTV 2209

Постановлением Государственного комитета стандартов Совета Министров СССР от 19 мая 1975 г. Не 1343 срок введения установлен

c 01.01.76

Проверен в 1985 г. Постановлением Госстандарта от 26.03.85 № 838 срок действия продлен

до 01.01.91

Несоблюдение стандарта преспедуется по закону

Настоящий стандарт распространяется на кремнийорганические продукты и устанавливает весовой и спектрофотометрический методы определения массовой доли кремния.

1. BECOBON METOA

. I.I. Сущность метода

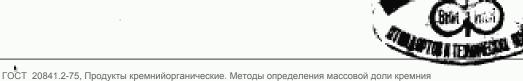
1.1.1. Сущность метода заключается в разложении навески продукта в кварцевой колбе или фарфоровом тигле 25%-ным олеумом и дымящей азотной кислотой, содержащей 20% окислов азота, и прокаливании образовавшейся двуокиси кремния при 800°C.

1.2. Реактивы, посуда, приборы

 1.2.1. Для определения массовой доли кремния применяются: олеум 25%-ный, готовят разбавлением 60%-ного олеума серной кислотой;

кислота серная по ГОСТ 4204—77;

колба кварцевая коническая с притертой пробкой, вместимостью 75—100 см³, высотой 80—90 мм;


липетка с делением по ГОСТ 20292—74, вместимостью 2—5 см³; тигель фарфоровый высокий 4 по ГОСТ 9147—80 или кварцевый по ГОСТ 19908—80, тип В-50;

Издание официальное

Перепечатка коспрещена

* Персиздание (август 1986 г.) с Изменениями № 1, 2 узвержденными в январе 1980 г., марте 1985 г. (ИУС 3—<u>8</u>

2

эксикатор по ГОСТ 25336—82 с металлической сеткой; электроплитка закрытого типа; печь муфельная на 800—850°С. (Измененная редакция, Изм. № 2).

1.3. Проведение испытания

Пробу испытуемого продукта взвещивают на весах с наибольшим пределом взвещивания 200 г (результат измерения записывают с точностью до четвертого десятичного знака) в кварцевой колбе или кварцевом или фарфоровом тигле, предварительно прокаленных в муфельной печи при 800°С до постоянной массы (допускаемые расхождения между двумя последними взвещиваниями не должны превышать 0,0002 г), туда же приливают 25% ный олеум, добавляют 2—3 капли азотной кислоты и осторожно нагревают на электроплитке. Затем в колбу снова, по каплям, добавляют азотную кислоту до тех пор, пока не прекратится обесцвечивание бурых паров, что указывает на заканцивающийся процесс окисления кремнийорганических соединений.

После этого приливают еще 2—3 капли азотной кислоты и содержимое колбы или тигля выпаривают, усиливая нагревание, для удаления избытка кислоты. При нагревании следят за тем, чтобы не было сильного вспенивания. При начинающемся вспенивании

колбу или тигель снимают с электроплитки.

Когда закончится выделение паров, колбу или тигель помещают в муфельную печь и прокаливают при 800—850°С в течение 2 ч. Затем колбу или тигель преносят в эксикатор, охлаждают в течение 30—60 мин и взвешивают с той же точностью. Прокаливание, охлаждение и взвешивание повторяют до получения постоянной массы.

При отсутствии азотной кислоты в колбу или тигель с навеской испытуемого продукта добавляют олеум и выдерживают в течение определенного времени, а затем поступают так, как описано выше.

В тех же условиях и с теми же количествами реактивов прово-

дят контрольный опыт.

Масса навески испытуемого продукта и объем олеума, необходимые для испытания, а также время выдержки с олеумом должны быть оговорены в стандартах и технических условиях, устанавливающих технические требования на кремнийорганическую продукцию.

(Измененная редакция, Изм. № 2).

1.4. Обработка результатов

Массовую долю кремния (X) в процентах вычисляют по формуле.

$$X = \frac{(m_1 - m_1) \cdot 0.4674 \cdot 100}{m}$$

где m — масса навески испытуемого продукта, r;

т. — масса остатка после прокаливания, г;

то масса остатка после прокаливания в контрольном опы-Te, r;

0,4674 — коэффициент пересчета с SiO2 на Si.

За результат испытання принимают среднее арифметическое трех параллельных испытаний, допускаемые расхождения между которыми не должны превышать 0,5% при доверительной вероятности $P \ge 0.95$.

(Измененная редакция, Изм. № 1).

2. СПЕКТРОФОТОМЕТРИЧЕСКИЯ МЕТОД

2.1. Сущиость метода

2.1.1. Сущность метода заключается в сплавлении испытуемого продукта с перекисью натрия в бомбе с печью сопротивления в атмосфере кислорода. Образующийся плав растворяют в воде и в полученном растворе определяют кремний в виде кремниймолибденовой кислоты дифференциальным спектрофотометрическим методом.

2.2. Реактивы, растворы, посуда и приборы

2.2.1. Для определения массовой доли кремния применяют: аммоний молибденовокислый по ГОСТ 3765—78. 5% ный раст-BOD;

кислота серная по ГОСТ 4204-77, концентрированная, раствор 1:1, и растворы концентраций с $\left(-\frac{1}{2}H_2SO_4\right) = 0.1$ моль/дм³ (0.1н.) н 0.5 моль/дм³ (0.5 н.);

натрия перекись (анализируют не реже одного раза в 3 мес);

калий хромовокислый по ГОСТ 4459—75;

фенолфталени (индикатор) по ГОСТ 5850—72, 0,1%-ный спиртовой раствор, готовят по ГОСТ 4919.1—77;

калия гидроокись по ГОСТ 24363—80, растворы концентраций

c (KOH) = 0.1 моль/дм³ (0.1 н.) и 0.05 моль/дм³ (0.05 н.);

спирт этиловый ректификованный технический ΓOCT 18300—72, высший сорт.

кислород газообразный по ГОСТ 5583-78;

тигли никелевые высотой 20 мм, диаметром 15 мм, толщиной стенки 1 мм;

стаканы химические по ГОСТ 25336-82, вместимостью 250-

колбы мервые по ГОСТ 1770-74, вместимостью 50, 100 и 1000 см³;

бюретка исполнения 7 по ГОСТ 20292-74; пипетка по ГОСТ 20292—74, вместимостью 25 и 100 см³; капельницы по ГОСТ 25336---82;

флаконы полиэтиленовые вместимостью 100 и 1000 см³;фильтры бумажные;

спектрофотометр марки Ф-4А или СФ-4, или СФ-16;

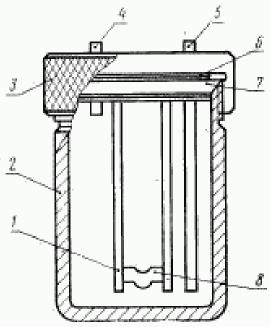
автотрансформатор лабораторный регулировочный типа ЛАТР 1M, 220 B-9A;

трансформатор понижающий типа ОСН-0,36, 150А, 5,2В, 220/5,

B/A 800 B_T;

весы лабораторные с наибольшим пределом взвешивания 200 г;

горелка газовая;


мешочки полиэтиленовые диаметром 5-8 мм, высотой 18-

20 мм, изготовленные из полиэтиленовой трубки;

бомба с печью сопротивления (см. чертеж), изготовленная из стали X18Н9Т или X18Н10Т (ГОСТ 5632—72) и состоящая из цилиндрического сосуда 2, крышки 7 с кольцевыми резиновой и металлической прокладками 6 и кольца 3. Крышка снабжена двумя клапанами 4 и 5 для входа и выхода кислорода и двумя медными токовводами 1, на концах которых должны быть плотно надеты насадки из стали X18Н9Т или X18Н10Т, к которым приваривают печь сопротивления 8, состоящую из нихромовых пластинок толщиной 0,5 мм, имеющих форму полуцилиндров.

Нихромовые пластинки меняют по мере прогорания.

Бомба с печью сопротивления 4 5

(Измененная редакция, Изм. № 2).

2.3. Построение градуировочного графика

Для построения градуировочного графика готовят образцовый раствор, содержащий 3 г перекристаллизованного хромовокислого

калия, взвешенных на весах с наибольшим пределом взвешивания 200 г (результат измерения записывают с точностью до четвертого десятичного знака) в 1000 см³ 0,1 н. раствора гидроокиси калия. Полученный раствор хранят в полиэтиленовом флаконе вместимостью 1 дм². Раствор устойчив в течение двух лет.

Градунровочный график строят в положительной и отрицатель-

ной областях координат.

Для построения графика в положительной области в мерные колбы вместимостью 50 см³ вносят 2,5; 2,7; 3,0; 3,3; 3,5; 3,8 и 4,0 см³ образцового раствора и доводят объемы водой до метки. Затем определяют величину оптической плотности на спектрофотометре в кюветах с толщиной поглощающего свет слоя I см при длине волны 400 нм по отношению к раствору сравнения. Раствор сравнения содержит 2 см³ образцового раствора в 50 см³ воды.

Для построения градуировочного графика в отрицательной области в мерные колбы вместимостью 50 см³ вносят 1,7; 1,5; 1,0 и 0,5 см³ образцового раствора, доводят объемы водой до метки и определяют величину оптической плотности раствора сравнения по отношению к приготовленным растворам. Значение оптических плотностей в этом случае будет иметь знак «минус».

Градуировочный график строят, откладывая на оси ординат оптическую плотность растворов, а на оси абсинсс - массу кремния в микрограммах, которому соответствуют взятые объемы образцового раствора. 1 см³ образцового раствора, разбавленного водой в мерной колбе вместимостью 50 см3, соответствует по окраске раствору кремнемолноденовой кислоты, содержащему 365 мкг кремния.

На каждом спектрофотометре проверяют образцовый раствор и устанавливают фактическое соответствие кремния одному миллилитру разбавленного образнового раствора.

2.4. Проведение испытання

Стенки сосуда бомбы смачивают водой. 20—30 мг продукта взвешивают (результат измерения записывают в миллиграммах с точностью до четвертого десятичного знака) в полиэтиленовом мешочке. Затем 1 г перекиси натрия взвешивают (результат измерення записывают с точностью до второго десятичного знака) примерно половину ее высыпают на дно никелевого тигля, а остальное количество поверх мешочка с навеской испытуемого продукта, помещенного в тигель.

Тигель вставляют в нихромовое кольцо печи сопротивления, закрывают крышкой цилиндр сосуда бомбы, надевают кольцо и от руки навинчивают его на сосуд бомбы. После этого, пользуясь клапанами, бомбу продувают 10-12 с кислородом и выходной клапан закрывают.

К клеммам, находящимся на крышке бомбы, в течение 10—15 с подают ток через трансформатор и ЛАТР. Через 5 мин после сжигания навески бомбу открывают, предварительно выпустив из нее через клапан избыток газа, вынимают тигель из нихромового кольца, переносят его на дно сосуда бомбы; крышку и стержни тщательно обмывают водой (15—20 см³).

Сосуд бомбы вместе с промывными водами и тиглем, содержащим плав, нагревают 5-7 мин на небольшом пламени горелки.

После охлаждения раствор количественно переводят в мерную колбу вместимостью 100 см³, доводят до метки и отфильтровы-

15 см³ приготовленного раствора помещают в мерную колбу вместимостью 50 см³, нейтрализуют по фенолфталенну растворами серной кислоты концентрации 5 моль/дм³ и затем 0,1 моль/дм³, добавляют 1 см³ раствора серной кислоты концентрации 5 моль/дм³, 3 г раствора молибденовокислого аммония и доводят до метки водой. Через 10 мин измеряют онтическую плотность полученного раствора на спектрофотометре в кювете с толщиной поглощающего свет слоя 1 см при длине волны 400 им по отношению к раствору сравнения.

 Если оптическая плотность испытуемого раствора окажется меньше оптической плотности раствора сравнения, применяют обратный порядок измерения (значение плотности приобретает знак «минус»).

По градуировочному графику находят массу кремния в раство-

ре в микрограммах.

2.3, 2.4. (Измененная редакция, Изм. № 2).

2.5. Обработка результатов

Массовую долю кремния (X_1) в процентах вычисляют по формуле

$$X_1 = \frac{m \cdot 100 \cdot 100}{15 \cdot m_1 \cdot 1000}$$
,

где m — масса кремния, найденная по градуировочному графику, мкг;

ит. — масса навески испытуемого продукта, мг;

100 — объем раствора испытуемого продукта, см³;

15 — объем раствора испытуемого продукта, взятый для испытания, см³.

За результат испытания принимают среднее арифметическое трех параллельных определений, допускаемые расхождения между которыми не должны превышать 0,5% при доверительной вероятности P≥0,95.

(Измененная редакция, Изм. № 1).

Изменение № 3 ГОСТ 20841.2—75 Продукты креминйорганические. Методы определения массовой доли кремиия

Утверждено и введено в действие Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 30.03.90 № 713

Дата введения 01.10.90

Пункт 1.2.1 дополнить абазацем (после второго) «кислота азотная по ГОСТ 4461--77 наи по ГОСТ 11125--84»;

четвертый абзац дополнить словами: «или стакан ВН по ГОСТ 19908—80 вместимост: ю 50 или 80 см³»;

щестой абаац дэнолинть словами: «допускается примень: че тиглей и чащек из платины»:

дополянть абрацами: «Весы лабораторные общего назначения типов ВЛР-200 г. или ВЛЭ-200 г.

Допускается применение других средств измерения с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов по качеству не ниже указанных в изстоящем стандарте».

Пункт 1.3. Заменнть слова: «на весах с наибольшим пределом взаешивания 200 г (результат измерения записывают с точностью до четвертого десятичного экака)» на «(результат взаешивания записывают в граммах до четвертого зна-ка)»:

третий абзац. Заменить слова: «с той же точностью» на «(результат вавещивания записывают в граммах до четвертого десятичного знака)».

(Продолжение см. с. 222)

221

Пункт 2.2.1. Второй абзак. Заменить слова: «5%-ный раствор» на «раствор с массовой долей 5 %»;

шестой абзан изложить в новой редакции: «фенолфталени (индикатор), спиртовой раствор с массовой долей 0.1 %, готовят по ГОСТ 4919.1—77»;

восьмой абзац. Заменить ссылку: ГОСТ 18300-72 на ГОСТ 18300-87;

двадцать первый абзац изложить в новой редакции; свесы лабораторные общего иззначения типа ВЛР-200 г или ВЛЭ-200 г»;

дополнить абзацем: «Допускается применение других средств измерения с четрологическими характеристиками не хуже, а также реактивов по качеству не ниже указанных в настоящем стандарте».

Пункт 2.3. Заменнть слова: «З г перекристаллизованного хромовокислого калия, взвещенных на весах с наибольшим пределом взвещивания 200 г (результат измерения записывают с точностью до четвертого десятичного знака) в 1000 см³ 0.1 н. раствора гидроокиси калия» на «3,0000 г перекристаллизованного хромовокислого калия в 1000 см³ раствора гидроокиси калия концентрации 0,1 моль/дм³».

Пункт 2.4. Заменить слова: «(результат измерения записывают в миллиграммах с точностью до четвертого десятичного знака)» на «(результат извешивания записывают в миллиграммах до четвертого десятичного знака)»; «(результат измерения записывают до второго десятичного знака)» на «(результат измерения записывают в граммах до второго десятичного знака)».

(HYC № 7 1990 r.)

222