

24615-81 ugu 1,2

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЦИКЛОГЕКСАНОН ТЕХНИЧЕСКИЙ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

TOCT 24615-81 (CT C3B 1681-79)

Издание официальное

Дена 3 кол,

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ Москва

РАЗРАБОТАН Министерством химической промышленности ИСПОЛНИТЕЛИ

О. А. Добровольский, В. Н. Громогласова, О. В. Левина, Т. Н. Глаголева

ВНЕСЕН Министерством химической промышленности

Чася Коллегии В. Ф. Ростунов

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 24 февраля 1981 г. № 966

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЦИКЛОГЕКСАНОН ТЕХНИЧЕСКИЙ

Технические условия

Technical cyclohexanon. Specifications ГОСТ 24615-81 (СТ СЭВ 1681-79)

OKII 24 J821

Постановлением Государственного комитета СССР по стандартам от 24 февраля 1981 г. № 966 срок действия установлен

до 01.03. 1981 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на технический циклогексанон, получаемый из бензола, анилина и фенола.

Циклогексанов применяется для органического синтеза и в качестве растворителя.

Формулы:.

эмпирическая СаНьоО

структурная

Молекулярная масса (по международным атомным массам 1971 г.) — 98,144.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

 1.1. Циклогексанон должен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

Издание официальное

Перелечатка воспрещена

*

С Издательство стандартов, 1981

1.2. По физико-химическим показателям циклогексанон должен соответствовать нормам, указанным в табл. 1.

Таблица І

	Норыя			
Наименование покизателя	Высший сорт ОКП 24 18/1 0120	1-8 copt OKII 24 (82) 0130		
1. Массовая доля циклогексанова, %, не менее 2. Массовая доля примесей, %, не более 3. Массовая доля воды, %, не бо- лее	99,8 0,1 9, 1	99,7 0,2 0,1		

.Примечание. Для органического синтеза предназначен циклогексанов только высшего сорта.

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

2.1. Циклогексанон легко воспламеняющаяся маслянистая жидкость с характерным запахом.

Плотность $\rho_4^{20} = 0.948$ г/см³; температура плавления минус 40.2° С; температура кипения 155.6° С, температура вспышки 40° С.

Пары циклогексанова с воздухом образуют вэрывоопасные смеси. Предел вэрываемости в смеси с воздухом при 20°С и давлении 101,325 кПа от 1,3 до 9% (по объему).

Циклогексанов с водой образует азеотропную смесь.

Средствами пожаротушения при загорании являются тонкораспыленная вода и химическая пена.

- 2.2. Циклогексанон токсичное вещество. Предельно допустимая концентрация циклогексанона в воздухе рабочей зоны производственных помещений (ПДК) 10 мг/м³ относится к 3-му классу опасности по ГОСТ 12.1.007—76. При концентрациях, превышающих предельно допустимую концентрацию, циклогексанон оказывает вредное действие на нервную систему. Вызывает головные боли, раздражение глаз, носа и горла.
- 2.3. При работе с циклогексаноном применяют индивидуальные средства защиты от попадания паров в организм и жидкого продукта на кожу: используют фильтрующий противогаз марки А или БКФ, резиновые перчатки и защитные очки.
- 2.4. Все помещения, в которых проводятся работы с циклогексаноном, должны быть оборудованы приточно-вытяжной вентиляцией, обеспечивающей содержание вредных веществ в концентрации не выше предельно допустимой, а оборудование герметизировано.

В помещениях должны быть аптечка с медикаментами для оказания первой помощи пострадавшим и необходимое противопожарное оборудование и инвентарь.

 Для защиты от статического электричества должны предусматриваться и соблюдаться правила защиты от статического электричества в производствах химической промышленности.

3. ПРАВИЛА ПРИЕМКИ

3.1. Циклогексанов принимают партиями. Партией считают любое количество продукта, но не более 70 т, однородного по показателям качества, оформленного одним документом о качестве.

Документ должен содержать:

- а) условное наименование предприятия-изготовителя и его товарный знак;
- б) наименование продукта (с указанием сырья, из которого получен продукт) и его сорт;
 - в) номер партии;
 - г) дату изготовления продукта;
 - д) массу брутто (для бочек) и нетто;
- е) результаты проведенных анализов и подтверждение о соответствии качества продукта требованиям настоящего стандарта;
- ж) подтверждение о нанесении на упаковку знаков опасности по ГОСТ 19433—74 и ГОСТ 14192—77;
 - з) обозначение настоящего стандарта.

При поставке циклогексанона в железнодорожных цистернах каждую цистерну принимают за партию.

- 3.2. Для проверки качества циклогексанона на соответствие требованиям настоящего стандарта отбирают 10% единиц продукции, но не менее чем три единицы, если число единиц продукции в партии не превышает 30; при отгрузке циклогексанона в цистернах пробы отбирают от каждой цистерны.
- 3.3. При получении неудовлетворительных результатов анализа хотя бы по одному из показателей анализ повторяют на удвоенной выборке той же партии продукции. Результаты повторного анализа распространяются на вею партию.

4. МЕТОДЫ АНАЛИЗА

Пробы циклогексанона отбирают по ГОСТ 5445—79

Среднюю пробу циклогексанона объемом не менее 500 см³ помещают в чистую сухую склянку с притертой пробкой.

На склянку накленвают этикетку с указанием наименования продукта, сорта, номера партин, даты отбора пробы, обозначения настоящего стандарта, надписей: «ОГНЕОПАСНО!», «ЯДОВИТО!».

4.2. Хроматографическое определение массовой доли циклогексанона и примесей

CTP. 4 FOCT 24615---81

4.2.1. Реактивы и приборы

Азот технический по ГОСТ 9293-74.

Водород технический по ГОСТ 3022-80.

Воздух для питания пневматических приборов и средств автоматизации по ГОСТ 11882—73.

Фаза жидкая — жидкость кремнийорганическая (ПФМС-4) по ГОСТ 15866—70

Фаза твердая:

хромосорб W, марки AW-ДМСS, зернами размером 0.18--025 мм;

хроматон N, марки AW-ДМСS, зернами размером 0,2—0,25 мм; хроматон N, марки AN или AW-ДМСS, зернами размером 0,25—0,32 мм, пропитанный 15% карбовакса 1500;

целит 545, марки АВС, зернами размером 0,21-0,25 мм.

Микрошприц вместимостью 10 мкл.

Эфир этиловый, х. ч.

Хроматограф с детектором ионизации в пламени.

Колонки хроматографические длиной 4 м, диаметром 4 мм и длиной 2 м, диаметром 3 мм.

Колонки стеклянные U-образные из стекла «Пирекс», длиной

45—50 см, диаметром 10 мм.

Печь трубчатая, обеспечивающая нагрев до 450°C.

4.2.2. Определение циклогексанона, получаемого из циклогексана и анилина

4.2.2.1. Подготовка к анализу

15 г кремиийорганической жидкости, взвешенной с погрешностью не более 0,1 г, растворяют в 50—70 см³ этилового эфира.

Полученным раствором пропитывают 35 г хроматона или хро-

мосорба или целита.

Эфир испаряют на водяной бане при 60—80°С, непрерывно перемешивая наполнитель, пока он не станет сыпучим. Затем его помещают в стеклянные U-образные колонки. Колонки помещают в трубчатую печь и прокаливают наполнитель под постоянным током азота при следующих условиях: 250°С — 1 ч; 350°С — 2 ч; 410°С — 1,5 ч (до появления жидкости на выходе из колонки). Скорость азота при этом не должна превышать 2 дм³/ч.

Полученный наполнитель засыпают в хроматографическую колонку через воронку, уплотняя его с помощью вибратора и водоструйного или форвакуумного насоса. Заполненную хроматографическую колонку устанавливают в термостат хроматографа, не подсоединяя к детектору и в течение 6—8 ч колонку продувают азотом, пропуская его со скоростью 40—60 см³/мин при 170°С. Затем охлаждают термостат до комнатной температуры и соединяют выход колонки с детектором.

4.2.2.2. Проведение анализа

Режим работы хроматографа

Длина колонки, м					4
Внутренний диаметр колонки	, Ma	(4
Температура колонки, °С			4		1150
Температура испарителя, °С		r			180
Расход азота, дм ³ /ч					3
Объем вводимой пробы, см ³					0.001
Продолжительность авализа,	MHR				30

Включение прибора, вывод его на рабочий режим и установление расхода водорода и воздуха, проводят по инструкции, прилагаемой к прибору.

Идентификацию компонентов проводят по относительному времени удерживания, измеренному по отношению к времени удерживания циклогексанона. Порядок выхода компонентов и относительное время удерживания каждого приведены в табл. 2 и на черт. 1.

Таблица 2

Наименование компонента	Относитемьное время удерживани		
Циклогексан	0.23		
н-Амиловый спирт	0,38		
Цвилопентанол	0,49		
Ненндентифицированная			
примесь	0,55		
Циклопентанон	0,6		
Гептанон-2	0,69		
Циклогексанол	0,8		
Циклогексанов	1.0		

4.2.3. Определение циклогексанона, получаемого из фенола

4.2.3.1. Подготовка к анализу

Хроматографическую колонку заполняют готовым сорбентом хроматоном N-AW (или хроматоном N-AW-ДМСS), пропитанным 15% карбовакса 1500. Заполненную колонку устанавливают в прибор и продувают газом-носителем, не подсоединяя ее к детектору, при 140—160°С в течение 6—7 ч.

4.2.3.2. Проведение анализа

Режим работы хроматографа

Длина колонки, м				,	F -			2
Внутренний диаметр	колон	KH,	MM	4			-	3
Температура колонки,				-		-		70
Температура испарите	ля, °С		,	1	r		•	150
Расход азота, дм ³ /ч			+			-		2
Объем вводимой проб	ы. см ^а							0.001

Включение прибора, вывод его на рабочий режим и установление расхода водорода и воздуха проводят по инструкции, прилагаемой к прибору.

Порядок выхода компонентов и относительное время удержи-

вания каждого приведены в табл. 3 и на черт. 2.

Таблица 3

Наименование компонента	Отпосительное время удерживания
Циклогексан Циклогексен Нендентифицированная	0,03 0,04
примесь Нендентифицированная	0,10
примесь Неидентифицированная примесь Циклогексанон Циклогексанол	0,17 0,43 1,00 1,54

4.2.4. Обработка результатов

Массовую долю компонентов определяют методом внутренней нормализации. Площади пиков вычисляют умножением каждого пика на его ширину, измеренную на половине высоты пи-

Массовую долю определяемой примеси (X_i) в процентах вычис**ляют** по формуле

$$X_l = \frac{S_l \cdot 100}{\Sigma S}$$
,

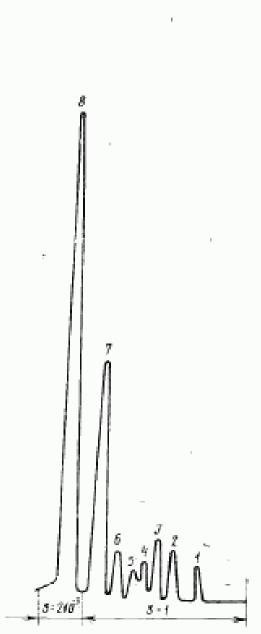
где S_I — площадь пика определяемой примеси, мм²; ΣS — сумма площадей всех пиков, мм².

Массовую долю циклогексанона (Х) в процентах вычисляют по формуле

$$X=100-\Sigma X_I-W$$

где ΣX_t — сумма примесей в циклогексаноне, определенная хроматографическим методом, %;

₩ — массовая доля воды, определенная по н. 4.3, %.


За результат анализа каждой примеси принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми не должны превышать 5% относительно вычисляемой величины.

4.3. Массовую долю воды определяют по ГОСТ 14870-77 методом Фишера, при этом реактив Фишера готовят следующим обра-SOM:

I раствор: к 30 см³ обезвоженного метанола добавляют 84.7 г йода;


II раствор: 920 см³ пиридина насыщают 64 г газообразного сернистого газа или приливают 45 см³ жидкого сернистого ангидрида.

Приготовленные растворы I и II сливают вместе.

3—циклогексан; 2—ж-амиловый спирт; 3—циклопештацол; 4—нендентифицирожанизя примесь; 5—циклопентанов; 6—гептанов-2; 7—циклогексанол; 5 циклогексаном

Черт. 1

 7—пиклогексан; 2—циклогексен; 3—шеидентифицированная примесь; 4—шеидентифицированная примесь; 5—шемдентифицированная примень; 6—циклогексанов; 7—циклогексанов

Черт. 2

5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. Циклогексанон заливают в сухие герметические стальные железнодорожные цистерны, автоцистерны, стальные бочки по ГОСТ 17366—80, стеклянные бутыли по ГОСТ 14182—80.

5.2. Стеклянные бутыли с циклогексаноном должны быть помещены в деревянные ящики или в деревянные обрешетки по ГОСТ 18573—78 и уплотнены древесной стружкой или полиэтиленовыми

амортизаторами.

Деревянные ящики и древесная стружка должны быть пропитаны негорючим веществом (насыщенным раствором хлористого кальция (магния) или сульфата аммония).

5.3. Транспортная маркировка должна соответствовать ГОСТ

14192 - 77.

На каждую упаковочную единицу должна быть нанесена маркировка с указанием;

- а) наименования предприятия-изготовителя и его товарного знака;
- б) наименования продукта (с указанием сырья, из которого получен продукт) и его сорта;
 - в) номера партии;
 - г) массы брутто и нетто;
 - д) даты изготовления;
 - е) обозначения настоящего стандарта;
- ж) знака опасности по ГОСТ 19433—74, соответствующего классу опасности 3 (подкласс 3.3), а также манипуляционных знаков по ГОСТ 14192—77, имеющих значение: «Осторожно, хрупкое!» (для бутылей) и «Боится нагрева».

К наливному люку железнодорожной цистерны, автоцистерны и к горловине бутыли прикрепляют бирку с теми же обозначениями.

- 5.4. На каждую цистерну и боковую поверхность бочки несмываемой краской при помощи трафарета наносят надпись «ОГНЕО-ПАСНО!».
- 5.5. Циклогексанон в цистернах транспортируют в соответствии с правилами перевозок жидких грузов наливом в вагонах-цистернах и бункерных полувагонах.
- Бочки с циклогексаноном транспортируют железнодорожным транспортом в крытых вагонах или автотранспортом под брезентом.

По согласованию с потребителем бочки с продуктом для транспортирования железнодорожным транспортом укладывают в пакеты на железном поддоне размером 800×1200 по ГОСТ 9078—74. 5.8. Циклогексанон хранят в емкостях, в которые поддувают азот с избыточным давлением 3920 Па (400 мм вод. ст.), на складах, предназначенных для хранения легковоспламеняющихся жид-

костей.

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

6.1. Изготовитель должен гарантировать соответствие циклогексанона требованиям настоящего, стандарта при соблюдении условий транспортирования и хранения, установленных стандартом.

6.2. Гарантийный срок хранения циклогексанона — 6 мес со дня изготовления или 30 сут со дня изготовления продукта, предназ-

наченного для производства капролактама.

По истечении гарантийного срока хранения продукт перед непользованием должен быть проверен на соответствие требованиям настоящего стандарта.

Изменение № 1 ГОСТ 24615-81 Циклогексанон технический. Технические условия

Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 25.05.87 № 1689

Дата введения 01.09.87

OKII 24 1821 Под наименованием стандарта заменить код: на ОКП 24 1821 0100.

Вводную часть дополнить абзацами (после второго): «Показатели технического уровия, установленные настоящим стандартом, предусмотрены для высшей категории качества.

Стандарт содержит все требования СТ СЭВ 1681-79.

В стандарте не предусмотрены требования к продукту 2-го сорта (см. приложение о соответствии требований настоящего стандарта требованиям стандарта C9B) v.

Пункт 1.2. Табляца 1. Головка. Исключить слова: «Высший

24 1821 0120»;

графу «1-й сорт ОКП 24 1821 0130» и пормы исключить; примечание исклю-4BTb.

Пункт 3.1. Четвертый абзац. Исключять слова: «и его сорт»; заменить ссылку: ГОСТ 19433-74 на ГОСТ 19433-81.

Пункт 4.1. Исключить слово: «сорта». Пункт 4.2.1, Третий абзац, Исключить ссылку: «по ГОСТ 11882—73»;

двенавлатый абзап. Заменить слова: «детектором нонизации в пламени» на «пламенно-нонизационным детектором».

(Продолжение см. с. 252).

(Продолжение изменения к ГОСТ 24615-81)

Пункт 4.2.2.1. Первый абзац. Заменить слова: «взвешенной с погрешностью не более 0,1 г» на «взвешивают (результат взвешивания записывают с точностью до первого десятичного знака)».

Пункт 5.3. Четвертый абзац. Исключить слова: «н его сорта»;

ваменить ссылку: ГОСТ 19433-74 на ГОСТ 19433-81.

Пункт 5.6, Заменить ссылку: ГОСТ 9078-74 на ГОСТ 9078-84.

Пункт 6.1. Заменить слова: «должен гарантировать» на «гарантирует»; всключить слова: «установленных стандартом»,

Пункт 6.2. Второй абзац исключить. Стандарт дополнить приложением:

> ПРИЛОЖЕНИЕ Обязательное

Соответствие требований ГОСТ 24615-81 СТ СЭВ 1681-79

Пункт	FOCT 24685-81	Пункт	CT C3B 1681-79
Разд. 1 Табл, 1	Отсутствуют нормы для II сорта продукта	Разд. I Табл.	Уставовлены пормы для 2-го сорта продукта
	(HYC N 8	1987 r.)	

Изменение № 2 ГОСТ 24615---81 Циклогексанон технический. Технические условия

Утверждено и введено в действие Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 30.05.90 № 1354

Дата введения 01.12.90

Вводная часть. Третий абзац исключить.

Пункт 3.1. Заменить ссылку: ГОСТ 19433-81 на ГОСТ 19433-88.

Раздел 4 дополнить пунктом — 4.1a (после п. 4.1): «4.1a. Допускается применение реактивов по качеству, а также средств измерений, аппаратуры и восуды по классу точности не ниже указанных в настоящем стандарте.

Допускается применение других методов анализа, обеспечивающих установ-

ленные нормы допускаемых расхождений.

При разногласиях в оценке качества определение проводят методами, приведенными в настоящем стандарте».

Пункт 4.3 дополнить абзацем: «Допускается определять массовую долю воды газохроматографическим методом в соответствии с д. 4.4».

Раздел 4 дополнить пунктом — 4.4;

«4.4. Определение массовой доли воды газохроматографическим методом в джапазоне массовых долей 0,05—0,2 %

Анализ основан на отделении воды от остальных компонентов на хроматографической колонке, заполненной полисорбом-1 либо полихромом-1, пропитанным полиэтиленгликолем (ПЭГ-1000). Вода фиксируется детектором по теплопроводности. Массовую долю воды измеряют с помощью градуировочной зависимости высоты пика воды от ее массовой доли в градуировочных смесях.

4.4.1. Аппаратура, реактивы и растворы

Хроматограф аналитический, газовый, лабораторный серии «Цвет-110» или другого типа, предел обнаружения объемной доли пропана детектором по теплопроводности не превышает 1·10 − 1 при использовании гелия в качестве газоносителя; диапазон температур термостата колонок — от 50 до 400 °C; погрешность поддержания заданной температуры — не более ±0,2 °C.

Колонки хроматографические насадочные, стальные, внутренним диаметром

3 мм, длиной I и 3 м.

Микрошприц по ГОСТ 22967—82 вместимостью $1 \cdot 10^{-2}$ см², цена наименьшего деления не превышает $2 \cdot 10^{-4}$ см² (типа МШ-10), допускаемое отклонение $\pm 1 \cdot 10^{-4}$ см³.

Весы лабораторные общего назначения по ГОСТ 24104-88 2-го класса точности с наибольшим пределом взвещивания 200 г.

Меры массы общего назначения по ГОСТ 7328-82.

Ликейка 300 по ГОСТ 427-75, цена наименьшего деления I мм.

Секундомер механический 1-го класса по ГОСТ 5072-79.

Шкаф сушильный электрический типа 2B-151 или другого типа с диапазоном регулирования температуры от 40 до 200 °C.

Колба Кн-1—50—14/23 ГОСТ 25336—82.

Гелий газообразный, ос.ч.

Полихром-1, размер зерен 0.25—0.50 мм.

Полиэтиленгликоль молекулярного веса 1000 для хроматографии, производство ФРГ (ПЭГ).

Полисорб-1, размер зерен 0,10-0,20 мм.

Циклогексаной по ГОСТ 24615-81.

Хлороформ по FOCT 20015—88, х.ч.

Ацетон по ГОСТ 2603-79, ч.д.а.

Эфир эталовый.

Кислота соляная по ГОСТ 3118-77, раствор с массовой долей 36 %.

Стеклоткань по ГОСТ 10727—73.

4.4.2. Подготовка к анализу

Условия выполнения измерений.

(Продолжение см. к. 236)

Температура окружающего воздуха . . . от 10 до 35 °С.

Напряжение переменного тока, питающего хроматограф . . . 220^{+22}_{-33} В.

Относительная влажность окружающего воздуха . . . от 30 до 80 %.

Атмосферное давление . . . от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.).

Частота переменного тока, питающего хроматограф . . . (50±1) Гц.

4.4.2.1. Подготовка наполнителя и заполнение колонок

ПЭГ₁₀₀₆, взятый в количестве 10 % от общей массы наполнятеля, взесшивают с полихромом-1, результаты взвешивания записывают в граммах с точностью до второго десятичного знака.

 $\Pi \Im \Gamma_{1000}$ растворяют в хлороформе, объем которого должен превышать объем

взятого полихрома-и в 1,2 раза.

В полученный раствор вносят полихром 1. Затем испаряют хлороформ в вытяжном шкафу при комнатиой температуре до волного исчезновения запаха хлороформа. Наполнитель досущивают в сущильном шкафу при 60°С в течение 2 и

Хроматографическую колонку последовательно промывают раствором соляной кислоты с объемной долей 36 %, дистиллированной водой, затем ацетоном и эфиром, сущат в токе сухого инертного газа при комнатной температуре.

При заполнении колонок полисорбом-I его вносят небольшими порциями, уплотияя с помощью вакуумирования и равномерного постукивания. Концы за-

полненной колонки уплотияют стеклотканью или стекловолокиом.

Перед заполнением колонок насадкой с полихромом-1 насадку и хроматографическую колонку предварительно охлаждают, например, в бытовом холодильнике при 4—6 °C в течение 1—2 ч. Затем заполняют колонку, как описано выше.

Заполненную колонку устанавливают в термостат хроматографа и, не присоединяя к детектору, продувают газом-носителем в течение 8—10 ч, постепенно поднимая теммературу от комиатной до 180°C (колонка с полисорбом-1) либо до 130°C (колонка с ПЭГ₁₀₀₀ на полихроме-1). Затем выдерживают колонку при этой температуре еще 10—15 ч. Расход газа-носителя при кондиционировании — 3 дм³/ч.

Монтаж, наладку и вывод хроматографа на рабочий режим проводят в соответствии с инструкцией, прилагаемой к прибору.

4.4.2.2. Режим работы хроматографа при градуировке и проведении испытаний

Объемный расход газа-носителя, см3/мия	50
Температура термостата, °С:	
для колонок с полисорбом-1	130
для колонок с ПЭГ ₁₀₀₀ на полихроме-1-	120
Температура термостата детектора, °С	140
Тенноратура испарителя, °С	150
Объем пробы при градунровке и анализе, см ²	3-10-3
Ток детектора, мА	200
Скорость диаграммной ленты, мм/ч	600-
Длина колонки с полисорбом-1, м	1,0
Длина колонки с ПЭГ 1000 на полихроме-1, м	3,0
Продолжительность анализа, мин	25

Параметры режима хроматографа разрешается корректировать, если при этом не ухудшаются точностные характеристики методики.

4.4.2.3. Градуировка хрожатографа

Градунровку кроматографа осуществляют по градунровочным растворам воды в циклогексанове. Градунровочные растворы готовят весовым методом. В коническую колбу вместимостью 50 см³ вносят последовательно инклогексанов в воду.

Результаты всех взвешиваний записывают в граммах с точностью до четвертого деситичного знака. Предварительно определяют методом Фишера (по

(Продолжение см. г. 237)

 п. 4.3) массовую долю воды в циклогенсаноне, который используют для приготовления градукровочных растворов. Готовят не менее пяти градукровочных растворов, перекрывающих весь днапазон массовой доли воды в циклогенсаноне.

Допускается применение для этой цели хроматографического метода доба-

вок в соответствии с п. 4.4.5:

Каждый градунровочный раствор сухим цоприцем вводят не менее трех раз в хроматограф, работающий в стабильном режиме. Измеряют линейкой высоту пика воды для каждого градунровочного раствора (h_ℓ).

Затем вычисляют градуировочную характеристику хроматографа (Кн.о.)

по формуле

$$K_{\rm H_2O} = \frac{\sum X_i \cdot \overline{h}_i}{\sum (\overline{h}_i)^2}$$
.

гле X_{ℓ} — массовая доля воды в i-том градунровочном растворе.

Допускается построение градунровочного графика в координатах: высота вика воды (h_L) — по оси абсинее и массовая доля воды (X_L) — по оси ординат

Проверяют градунровочную дарактеристику прибора один раз в неделю и обязательно при любых изменениях режима работы хроматографа или после его ремонта.

4.4.3. Проведение анализа

Режим работы хроматографа при анализе должен быть таким же, как при

градунровке, и строго постоянным,

В испаритель хроматографа, работающего в стабильном режиме, вводят сухим ширицем исследуемую пробу циклогексанова. Пробу хроматографируют дважды в измеряют высоту пика воды линейкой.

Вычисляют мяссовую долю воды (Хпр) в пробе по формуле

$$X_{\rm mp} - K_{\rm H,O} \cdot \widetilde{h}_{\rm mp}$$
.

тде. \overline{h}_{np} — средняя высота вика воды.

Если градунровочная характеристика хроматографа была представлена в виде градунровочного графика, массовую долю воды в анализируемой пробе определяют во градунровочному графику.

(Продолжение см. г. 238)

Допускаемая относительная суммарная погрешность результатов измерений 8 и 6 % (для массовых долей воды 0.04 и 0.14 % соответственно) при доверительной вероятности 0.95.

Допускается измерение массовой доли воды в циклотексаноне методом добавок, если при этом не ухудшаются точностные характеристики методики.

Взвешивают навеску внализируемой пробы циклогексанона (около 20 г). Добавляют навеску воды массой около 0,01 г. Результаты взвешиваний записывают в граммах с точностью до четвертого десятичного знака.

Сухим шприцем два-три раза вводят в хроматограф пробу анализируемого циклогексанона. Затем два-три раза вводят такой же объем приготовленной

пробы с добавкой воды.

Измеряют линейкой высоты виков и рассчитывают среднюю высоту пика воды для каждой пробы.

4.4.4. Обработка результатов

Массовую долю воды $(X_{\rm np})$ в исследуемой пробе циклогексанона вычисляют по формуле

$$\chi_{n_{b}^{-4\pi}} = \frac{\overline{h}_{1} \cdot m_{H_{2}O} \cdot 100}{(\overline{h}_{2} - \overline{h}_{1}) \cdot m_{n_{0}}}$$
,

где $\widetilde{h_1}$ и $\widetilde{h_2}$ — высота лика воды на хроматограмме анализируемой пробы циклогексанона и на хроматограмме пробы с добавкой воды, соответственно: мм;

 $m_{\rm H_2O}$ — масса навески воды, добавленной к пробе циклогексанова, г; $m_{\rm ID}$ — масса навески пробы циклогексанова, г.

В связи с отсутствием стандартных образцов состава, контрольных методики других средств и методов проверки правильности методики контроль точности осуществляется по допускаемому раскождению между результатами параллельных наблюдений, абсолютное раскождение между которыми не превышает 0,006 и 0,01% для массовых долей воды 0.04 и 0,17% соответствению.

При разногласиях в оценке качества определение проводят, как указано в п. 4.3».

Пункт 5.3. Подпункт ж изложить в новой редакции: «ж) знака опасности по ГОСТ 19433—88 (класс 3, подкласс 3.3, черт. 3, категория 3.3.1, классификационный шифр 3.3.1.3), шифра ООН 1915, а также манипуляционных знаков по ГОСТ 14192—77 «Осторожно, хрупкое!» (для бутылей) и «Боится нагрева».

(ИУС № 8 1990 г.)

Редактор А. С. Пивничная Технический редактор В. Н. Прусакова Корректор Г. М. Фролова

Сдано в наб. 13.04.81 Подп. в поч. 16.06.81 0,75 п. л. 0.61 уч.-изд. л. Тир. 16000 Цена 3 коп.

Ордена «Знак Почета» Издательство стандартов, 123557, Москва, Новопресневский пер., 3, Калужская типография стандартов, ул. Московская, 256 Зак. 1965

