МЕЖГОСУДАРСТВЕННЫЙ COBET ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС) INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 24980— 2005

Тара стеклянная

МЕТОДЫ КОНТРОЛЯ ПАРАМЕТРОВ

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—97 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Порядок разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 PA3PA5OTAH Техническим комитетом по стандартизации ТК 74 «Стеклянная тара»
- 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 27 от 22 июня 2005 г.)

За принятие стандарта проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Азербайджан	AZ	Азстандарт
Армения.	AM	Министерство торговли и экономического развития
		Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	ΚZ	Госстандарт Республики Казахстан
Кыргызстан	KG	Национальный институт стандартов и метрологии
		Кыргызской Республики
Молдова	MD	Молдова-Стандарт
Российская Федерация	RU	Федеральное агентство по техническому регули-
		рованию и метрологии
Таджикистан	TJ ·	Таджикстандарт
Туркменистан	TM	Главгосслужба «Туркменстандартлары»
Узбекистан	UZ	Агентство «Узстандарт»

- 4 В настоящем стандарте учтены основные нормативные положения следующих международных стандартов:
- ИСО 8106:1985 «Тара стеклянная. Определение вместимости гравиметрическим методом.
 Метод испытания» (ISO 8106:1985 «Glass containers Determination of capacity by gravimetric method Test method», NEQ);
- ИСО 9008:1991 «Бутылки стеклянные. Вертикальность. Метод испытания» (ISO 9008:1991 «Glass bottles Verticality Test method», NEQ);
- ИСО 9009:1991 «Тара стеклянная. Высота и непараллельность венчика горловины относительно основания. Методы испытания» (ISO 9009:1991 «Glass containers—Height and non-parallelism of finish with reference to container base Test methods», NEQ)
- 5 Приказом Федерального агентства по техническому регулированию и метрологии от 24 октября 2005 г. № 256-ст межгосударственный стандарт ГОСТ 24980—2005 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2006 г.
 - 6 B3AMEH FOCT 24980-92
 - 7 ПЕРЕИЗДАНИЕ

Информация о введении в действие (прекращении действия) настоящего стандарта публикуется в указателе «Национальные стандарты».

Информация об изменениях к настоящему стандарту публикуется в указателе «Национальные стандарты», а текст изменений — в информационных указателях «Национальные стандарты». В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе «Национальные стандарты»

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Тара стеклянная

МЕТОДЫ КОНТРОЛЯ ПАРАМЕТРОВ

Glass containers. Methods of testing the parameters

Дата введения — 2006—07-01

1 Область применения

Настоящий стандарт распространяется на стеклянную тару и устанавливает методы контроля ее параметров и размеров.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 164-90 Штангенрейсмасы. Технические условия

ГОСТ 166-89 (ИСО 3599-76) Штангенциркули. Технические условия

ГОСТ 10197—70 Стойки и штативы для измерительных головок. Технические условия

ГОСТ 10905—86 Плиты поверочные и разметочные. Технические условия

ГОСТ 25336—82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 28498—90 Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний

ГОСТ 29329-92 Весы для статического взвешивания. Общие технические требования

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов по указателю «Национальные стандарты», составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Отбор и подготовка образцов к контролю

- 3.1 Порядок отбора и количество образцов тары (далее образцов) для контроля устанавливают в нормативных документах на тару конкретных видов.
- 3.2 Образцы до начала проведения контроля выдерживают не менее 30 мин в помещении при температуре не ниже 18 °C.

4 Контроль массы

4.1 Средства контроля (измерений)

Весы для статического взвешивания по ГОСТ 29329 или другим нормативным документам с погрешностью взвешивания, не более:

± 0,2 г — для тары вместимостью до 10 см³ включительно;

± 0,5 г — для тары вместимостью свыше 10 до 250 см³ включительно:

Издание официальное

FOCT 24980-2005

- ± 1 г для тары вместимостью свыше 250 до 1000 см³ включительно;
- ± 2,5 г для тары вместимостью свыше 1000 см³.

4.2 Проведение контроля

Образец чистой и сухой тары помещают на весы и взвешивают.

5 Контроль полной и номинальной вместимости

5.1 Средства контроля (измерений)

Весы для статического взвешивания по ГОСТ 29329 или другим нормативным документам с погрешностью взвешивания:

- ± 0,2 г для стеклянной тары вместимостью до 10 см³ включительно;
- ± 0,5 г для тары вместимостью свыше 10 до 250 см3 включительно;
- ± 1 г для тары вместимостью свыше 250 до 1000 см³ включительно;
- ± 2,5 г для тары вместимостью свыше 1000 см3.

Воронка, стакан по ГОСТ 25336.

Ограничительная стеклянная круглая (или квадратная) пластина для тары с широкой горловиной. Штангенциркуль с глубиномером по ГОСТ 166 или другое устройство с погрешностью измерения не более 0,1 мм.

Термометр по ГОСТ 28498 с ценой деления не более 1 °C.

5.2 Контроль полной вместимости

5.2.1 Метод А

Чистый и сухой образец взвешивают на весах. Затем его до краев наполняют водой температурой (22 ± 5) °С и снова взвешивают, определяя общую массу. При взвешивании наружная поверхность образца должна быть сухой. Разность между массой образца, наполненного водой, и массой порожнего образца (в граммах) соответствует полной вместимости образца в кубических сантиметрах (1 г воды равен 1 см³).

5.2.2 Метод Б

При определении вместимости тары с широкой горловиной с применением ограничительной пластины сначала взвешивают чистый и сухой образец и ограничительную пластину.

Образец наполняют водой температурой (22 ± 5) °C до образования выпуклого мениска над торцом горловины образца. Затем мениск срезают, надвигая ограничительную пластину сбоку на торец горловины, при постоянном плотном контакте пластины с плоскостью венчика образца. Под стеклянной пластиной не должны оставаться воздушные пузыри. Наружную поверхность образца и стеклянной пластины вытирают, не сдвигая пластины, затем проводят взвешивание. Разность между массой образца, наполненного водой, накрытого пластиной, и суммарной массой порожнего образца со стеклянной пластиной в граммах соответствует полной вместимости образца в кубических сантиметрах (1 г воды равен 1 см³).

5.3 Контроль номинальной вместимости по уровню заполнения

Образец чистой и сухой тары взвешивают на весах. Затем наполняют водой температурой (22 ± 5) °С до уровня налива, указанного в стандартах или другой технической документации на тару для конкретных видов продукции. При этом глубиномер штангенциркуля должен касаться нижнего мениска. Образец с водой снова взвешивают, определяя общую массу. При взвешивании наружная поверхность образца должна быть сухой. Разность между массой образца, наполненного водой, и массой порожнего образца в граммах соответствует его номинальной вместимости в кубических сантиметрах (1 г воды равен 1 см³).

6 Контроль отклонений формы тары

6.1 Контроль отклонения от параллельности торца венчика горловины плоскости дна

6.1.1 Средства контроля (измерений)

Поверочная металлическая плита или горизонтальная подставка, на которую ставят образец. Штангенрейсмас по ГОСТ 164 или другие средства измерений, обеспечивающие измерение расстояния между самой высокой и самой низкой точками плоскости венчика горловины с погрешностью не более 0,1 мм.

2

6.1.2 Проведение контроля

Образец устанавливают в вертикальном положении на поверочную плиту или горизонтальную подставку. Измерительную ножку средства измерения приводят в соприкосновение с торцом венчика горловины. Вращая образец на 360°, находят максимальное и минимальное показания на отсчетном устройстве.

Отклонение от параллельности торца венчика горловины плоскости дна вычисляют как разность между максимальным и минимальным показаниями.

6.2 Контроль отклонения от перпендикулярности вертикальной оси относительно плоскости дна

6.2.1 Средства контроля (измерений)

Горизонтальная подставка, на которую ставят образец, способная удерживать основание образца в горизонтальном положении и обеспечивать центровку дна при вращении образца на 360°.

Индикатор часового типа, обеспечивающий измерение отклонения от перпендикулярности вертикальной оси относительно плоскости дна тары с погрешностью не более 0,1 мм.

Для некруглых образцов используют устройство, позволяющее удерживать образец в центре вращающего зажимного патрона.

6.2.2 Проведение контроля

Метод А

Образец устанавливают на горизонтальную подставку с закрепленным на ней V-образным блоком и прижимают к нему.

Измерительный наконечник индикатора часового типа приводят в соприкосновение с наружной частью венчика горловины образца. Вращая образец на 360°, при постоянном контакте венчика горловины с измерительным наконечником, проводят измерение, отмечая максимальное и минимальное показания индикатора часового типа.

Метод Б

Образец устанавливают в самоцентрирующийся зажимной патрон, имеющий три или четыре зажима, и зажимают образец. Измерительный наконечник индикатора часового типа приводят в соприкосновение с наружной частью венчика горловины. Вращая образец на 360°, при постоянном контакте венчика горловины с измерительным наконечником, проводят измерение, отмечая максимальное и минимальное показания индикатора часового типа.

Отклонение от перпендикулярности вертикальной оси относительно плоскости дна образца К вычисляют по формуле (1) в процентах или по формуле (2) в миллиметрах

$$K = \frac{G_{\text{max}} - G_{\text{min}}}{2H} 100;$$
 (1)

$$K = \frac{G_{\text{max}} - G_{\text{min}}}{2}, \qquad (2)$$

где G_{\max} , G_{\min} — максимальное и минимальное показания индикатора часового типа, мм; H — высота тары, мм.

6.3 Контроль плоскостности (вогнутости) венчика горловины образца с широкой горловиной

6.3.1 Средства контроля (измерений)

Поверочная металлическая плита по ГОСТ 10905 или плоское полированное стекло.

Металлические щупы, калиброванные через каждые 0,05 мм.

6.3.2 Проведение контроля

Образец торцом венчика горловины устанавливают на поверочную плиту или на стекло и дают время для стабилизации его положения. Для измерения зазора выбирают щуп толщиной, равной максимально допустимому значению зазора между торцом венчика горловины и поверочной плитой, установленному в нормативных документах для конкретного типа венчика горловины. Медленно перемещая щуп, находят зазор. При наличии зазора вводят щуп, при этом он должен лежать в плоском положении на плите. Щуп считается введенным, если его конец доходит до внутренней кромки горловины образца. При этом должна быть обеспечена стабилизация положения тары и отсутствие его перемещения в любом направлении.

Вставляя щупы различной толщины, определяют наибольший зазор между венчиком горловины образца и плитой.

7 Контроль размеров тары

7.1 Контроль высоты

7.1.1 Средства контроля (измерений)

Штангенрейсмас по ГОСТ 164 или другие средства измерения, обеспечивающие измерение максимального и минимального расстояний между плоскостью дна и торцом венчика горловины образца с погрешностью не более 0,1 мм.

Поверочная металлическая плита по ГОСТ 10905 или горизонтальная металлическая подставка. Предельные калибры.

7.1.2 Проведение контроля

Образец устанавливают на поверочную плиту или горизонтальную поверхность и, поворачивая вокруг своей оси, измеряют минимальное и максимальное значения высоты. При контроле калибрами образец при вращении вокруг своей оси должен проходить под плоскостью «максимальная высота» или не проходить под плоскостью «минимальная высота».

7.2 Контроль наружного диаметра корпуса и диаметра венчика горловины тары

7.2.1 Средства контроля (измерений)

Штангенциркуль по ГОСТ 166 или другие средства измерения с погрешностью не более 0.05 мм для диаметра венчика горловины и не более 0.1 мм для диаметра корпуса.

Предельные калибры-скобы.

7.2.2 Проведение контроля

Вращая образец, штангенциркулем измеряют минимальное и максимальное значения диаметров в нескольких точках по высоте и окружности образца.

При контроле диаметра калибрами-скобами образец должен проходить через максимальный и не проходить через минимальный размеры калибра.

7.3 Контроль толщины стенки и дна

7.3.1 Средства контроля (измерений)

Средства контроля (измерений) должны обеспечивать измерение толщины стенки и дна с погрешностью не более 0.1 мм.

7.3.2 Проведение контроля

Толщину стенки и толщину дна образца измеряют в различных точках, определяя наличие отклонений от заданного значения.

7.4 Контроль высоты швов и уголков на корпусе образца

7.4.1 Средства контроля (измерений)

Индикатор часового типа или другие средства измерений с погрешностью не более 0,05 мм.

Штативы для измерительных головок по ГОСТ 10197.

Призматическая подставка.

7.4.2 Проведение контроля

Образец помещают на призматическую подставку. Измерение начинают непосредственно вблизи шва, уголка и завершают при повороте образца вокруг его оси на вершине шва, уголка.

Разность между измеренными значениями соответствует высоте шва и/или уголка.

7.5 Контроль высоты шва на торце венчика горловины образца

7.5.1 Средства контроля (измерений)

Штативы для измерительных головок по ГОСТ 10197.

Индикатор часового типа с погрешностью не более 0,05 мм.

Поверочная металлическая плита по ГОСТ 10905 или горизонтальная металлическая подставка.

7.5.2 Проведение контроля

Штатив с индикатором часового типа устанавливают на поверочную плиту или горизонтальную подставку. Образец подводят под наконечник индикатора. Измерение начинают непосредственно вблизи шва и завершают при повороте образца на вершине шва.

Разность между измеренными значениями соответствует высоте шва.

7.6 Размеры стеклянной тары, не указанные в 6.1—7.5, контролируют средствами контроля (измерений), погрешность которых должна соответствовать значению допускаемых отклонений, предусмотренному нормативными документами на тару конкретных видов.

8 Оформление результатов контроля

- 8.1 Результаты контроля оформляют протоколом с указанием:
- даты и места отбора образцов;
- характеристики образцов (наименования, цвета, типа и вместимости тары);
- количества образцов;
- результатов контроля параметров;
- обозначения настоящего стандарта;
- даты, места проведения контроля и подписи лица, проводившего контроль.

MKC 55.020

Д99

Ключевые слова: стеклянная тара, масса тары, полная и номинальная вместимость тары, отклонения формы тары, размеры тары

6