винты установочные

МЕХАНИЧЕСКИЕ СВОЙСТВА И МЕТОДЫ ИСПЫТАНИЙ

Издание официальное

межгосударственный стандарт

ВИНТЫ УСТАНОВОЧНЫЕ

Механические свойства и методы испытаний

ГОСТ 25556—82

Set screws Mechanical properties and test methods

MKC 21.060.10

Постановлением Государственного комитета СССР по стандартам от 28 декабря 1982 г. № 5171 дата введения установлена

01.01.85

Настоящий стандарт распространяется на установочные винты и на аналогичные крепежные изделия из углеродистой или легированной стали с номинальным диаметром резьбы от 1,0 до 39 мм, не работающие на растяжение.

Настоящий стандарт не распространяется на установочные винты и аналогичные крепежные изделия, к которым предъявляются специальные требования на свариваемость, коррозионную стойкость, способность выдерживать температуры выше плюс 300°C (или плюс 250°C для автоматной стали) и ниже минус 50°C.

(Измененная редакция, Изм. № 1).

1. МЕХАНИЧЕСКИЕ СВОЙСТВА

 По механическим свойствам установочные винты подразделяют на классы прочности, указанные в табл. 1.

Таблица 1

Класс прочности винта	14H	22H	33H	45H
Твердость по Виккерсу, HV, не менее	140	220	330	450

Примечание. Обозначение классов прочности состоит из минимального значения твердости по Виккерсу, деленного на 10, и буквы Н — условного обозначения твердости.

 Установочные винты должны изготовляться из углеродистой стали, соответствующей требованиям, указанным в табл. 2.

Таблица 2

Класе прочности		Содержание в %			
винта	Термическая обработка винта	Углер	од	Фосфор, не более	Сера, не более
nintita		не более	не менее	чостор, не облес	c.epa, ne ocnee
14H		0;50	<u> </u>	0,11	0,15
22H	Закалка и отпуск	0,50	_	0.05	0,05
33H	То же	0,50	_	0,05	0,05
45H	>>	0,50	0,19	0.05	0.05

Для винтов класса прочности 14H допускается применение автоматной стали с содержанием свинца не более 0,35%, фосфора не более 0,11%, серы не более 0,34%.

Для винтов с квадратной головкой класса прочности 14Н допускается цементация.

Издание официальное

Перепечатка воспрещена

C. 2 FOCT 25556-82

Для винтов класса прочности 22H, 33H и 45H допускается применение стали с максимальным содержанием свинца 0,35%.

Для винтов класса прочности 22H, 33H, 45H допускается применение стали с содержанием одного или более легирующих элементов, таких как хром, никель, молибден, ванадий или бор.

Для винтов класса прочности 45H допускается применять другой материал при условии удовлетворительного результата испытаний винтов на кручение по п. 2.3.

(Измененная редакция, Изм. № 1).

1.3. Механические свойства винтов, при нормальной температуре, должны соответствовать указанным в табл. 3.

Для винтов класса прочности 22Н допускается превышение верхнего предела твердости на 10%.

Таблица 3

Параметр	Значение параметра для винтов клаеса прочности					
Параметр	14H	22H	33H	45H		
Твердость по:						
Виккерсу HV	От 140 до 290	От 220 до 300	От 330 до 440	От 450 до 560		
Бринеллю НВ	От 133 до 276	От 209 до 285	От 314 до 418			
Роквеллу:						
HRB	От 75 до 105	Не менее 95	_	_		
HRC ₂	·	Не более 30	От 33 до 44	От 45 до 53		
Высота необезуглеро- женной зоны резьбы, мм, не менее	_	1/2 h*	$\frac{2}{3}h^*$	$\frac{3}{4}h^*$		
Глубина полного обезуг- лероживания резьбы, мм, не более	_	0,015	0,015	**:		

h — высота профиля резьбы винта.

(Введен дополнительно, Изм. № 1).

2. МЕТОДЫ ИСПЫТАНИЙ

Твердость установочных винтов следует измерять на торце винта, как можно ближе к центру. Твердость винтов с засверленным концом измеряют на кольцевой поверхности торца.

При превышении максимального значения твердости проводят повторное измерение твердости на поперечном сечении винта на расстоянии 0,5 мм от его торца.

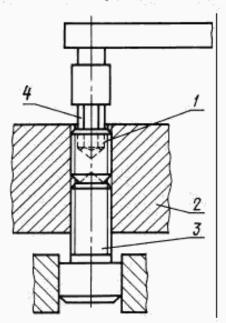
В спорных случаях решающим является измерение твердости по Виккерсу.

Допускается вместо контроля твердости винтов с классом прочности 14H контролировать твердость исходного материала.

Твердость винтов следует измерять:

- по Виккерсу по ГОСТ 2999;
- по Бринеллю по ГОСТ 9012;
- по Роквеллу по ГОСТ 9013 и ГОСТ 8.064.
- Глубину обезуглероженного слоя следует измерять методом микроскопического исследования по ГОСТ 1759.0, ГОСТ 1759.1, ГОСТ 1759.2, ГОСТ 1759.4.

Значения глубины полного обезуглероживания должны соответствовать указанным в табл. 3, значения высоты необезуглероженной зоны резьбы — указанным в табл. 3 или 4.


^{**} Для винтов класса прочности 45Н полное обезуглероживание не допускается.

^{1.4.} Марки сталей, применяемых для изготовления установочных винтов, приведены в приложении.

Nike

Шаг резьбы	Высота профиля резьбы	Значение высоты необезуглероженной зоны резьбы, не мен при классе прочности винтов			
		:22H	33H	45H	
0,5	0,307	0,154	0,205	0,230	
0,6	0,368	0,184	0,245	0,276	
0,7	0,429	0,215	0,286	0,322	
0,8	0,491	0,245	0,327	0,368	
1	0,613	0,307	0,409	0,460	
1,25	0,767	0,384	0,511	0,575	
1,5	0,920	0,460	0,613	0,690	
1,75	1,074	0,537	0,716	0,806	
2.	1,227	0,614	0,818	0,920	
2,5	1;534.	0,767	1,023	1,151	
3.	1,840	0,920	1,227	1,380	
3,5	2,147	1,074	1,431	1,610	
4	2,454	1,227	1,636	1,841	

 Испытание на кручение установочных винтов с шестигранным углублением под ключ класса прочности 45H должно проводиться согласно приведенной схеме.

Для испытания на кручение установочный винт *I* ввинчивают в резьбовое отверстие (допуск резьбы — 5H) контрольной плиты *2* до упора в винт *3*, ввинченный с другой стороны плиты, при этом верхняя поверхность испытуемого винта должна быть утоплена в контрольной плите.

Твердость контрольной плиты — не менее HRC, 50, твердость винта 3 — HV450...570.

Для приложения к испытуемому винту крутящего момента используется шестигранная вставка 4, имеющая допуск на размер S под ключ h9, диаметр описанной окружности $e \ge 1;13S_{\min}$ и твердость HRC $_3.55...60$.

Вставка должна входить в шестигранное углубление испытуемого винта на полную его глубину. Винты должны выдерживать крутящий момент, величины которого указаны в табл. 5.

Размеры мм

Номинальный		Длина испытуемо	го винта, не менее		Кругящий
днаметр резьбы	с плоским концом	с засверленным концом	с коническим концом	с цилиндрическим концом	момент, Н м
3	.4.	4	:5	5	0,9
. 4 -	5.	5	6	6	2,5
5	5	36	8.	8	5
6.	8	8	. 8,	8.	8,5
8.	8.	10	10	10	20
10	-10	12	.12	12	40
12	16	16	16	16	65
.16	20	20	20	20	160
:20.	-20	.25	.25	25	310
24	25	30	30	30	520

После испытаний на винтах не должно быть трещин, выкрашиваний и других повреждений.

ПРИЛОЖЕНИЕ Рекомендуемое

Марки сталей, применяемых для изготовления установочных винтов

Класс прочности	Марка стали.	Номер стандарта
14H	10, 20, 30, 35, 45	ГОСТ 1050 ГОСТ 10702
22H	35, 45, 35X, 38XA	ГОСТ 1050 ГОСТ 10702
33H	35, 45, 40XH2MA	ΓΟCT 1050 ΓΟCT 10702
45H	45, 40X, 45X, 35X, 38XA, 40XH, 40XH2MA	ΓΟCT 10702 ΓΟCT 4543

ПРИЛОЖЕНИЕ. (Введено дополнительно, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством станкостроительной и инструментальной промышленности
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 28.12.82 № 5171
- 3. Стандарт полностью соответствует СТ СЭВ 3679-82
- 4. Стандарт полностью соответствует международному стандарту ИСО 898-5-1980
- 5. ВВЕДЕН ВПЕРВЫЕ
- 6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, приложение
ΓΟCT 8.064—94	2.1
ΓΟCT 1050—88	Приложение
ГОСТ 1759.0—87	2.2
ΓΟCT 1759.1—82	2.2
POCT 1759:2-82	2,2
ГОСТ 1759.4—87	2.2
ГОСТ 2999—75	2.1
ΓΟCT 4543—71	Приложение
ГОСТ 9012—59	2.1
ΓΟCT 901359	2:1
ΓΟCT 10702—78	Приложение

7. ИЗДАНИЕ с Изменением № 1, утвержденным в августе 1987 г. (ИУС 12-87)

