ПРОДУКТЫ ПЕРЕРАБОТКИ ПЛОДОВ И ОВОЩЕЙ

Методы определения нитратов

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРГИФИКАЦИИ
Минск

Предисловие

1 РАЗРАБОТАН Всероссийским научно-исследовательским институтом консервной и овощесущильной промышленности (ВНИИКОП) и МТК 93 «Продукты переработки плодов и овощей»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 8 от 12 октября 1995 г.)

За принятие проголосовали:

	Наименование государства	Наименование национального органа по стандартизации
	Республика Беларусь Республика Казахстан Российская Федерация Республика Талжикистан	Госстандарт Беларуси Госстандарт Республики Казахстан Госстандарт России Таджикгосстандарт
_	Туркменистан	Главная государственная инспекция Туркменистана

- 3 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 25 февраля 1996 г. № 141 межгосударственный стандарт ГОСТ 29270—95 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1997 г.
 - 4 B3AMEH ΓΟCT 29270--91
 - 5 ПЕРЕИЗДАНИЕ

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

156

II

продукты переработки плодов и овощей

Методы определения витратов

Fruit and vegetable products. Methods for determination of nitrates

Дата введения 1997—01—01

1 Область применения

Настоящий стандарт распространяется на продукты переработки плодов и овощей и устанавливает методы определения нитратов: фотометрический и ионометрический.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

- ГОСТ 61-75 Кислота уксусная. Технические условия
- ГОСТ 334-73 Бумага масштабно-координатная. Технические условия
- ГОСТ 1750-86 Фрукты сушеные. Правила приемки, методы испытаний
- ГОСТ 1770—74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия
 - ГОСТ 3118-77. Кислота соляная. Технические условия
 - ГОСТ 3760-79 Аммиак водный. Технические условия
 - ГОСТ 4168-79 Натрий азотнокислый. Технические условия
 - ГОСТ 4174-77 Цинк сернокислый 7-водный. Технические условия
 - ГОСТ 4197-74 Натрий азотистокислый. Технические условия
 - ГОСТ 4199-76. Натрий тетраборнокислый 10-водный. Технические условия
 - ГОСТ 4204-77 Кислота серная. Технические условия
 - ГОСТ 4207-75 Калий железистосинеродистый 3-водный. Технические условия
 - ГОСТ 4217-77 Калий азотнокислый. Технические условия
 - ГОСТ 4234-77 Калий хлористый. Технические условия
 - ГОСТ 4328-77 Натрия гидроокись. Технические условия
 - ГОСТ 4329-77 Квасцы алюмокалиевые. Технические условия
 - ГОСТ 4456—75 Кадмий сернокислый. Технические условия
 - ГОСТ 5821-78 Кислота сульфаниловая. Технические условия
 - ГОСТ 5823—78 Цинк уксуснокислый 2-водный. Технические условия
 - ГОСТ 6709-72 Вода дистиллированная. Технические условия
 - ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровые. Технические условия
- ГОСТ 10652—73 Соль динатриевая этилендиамин-N, N, N, N-тетрауксусной кислоты 2-водная (трилон Б)
 - ГОСТ 10929—76 Водорода пероксид. Технические условия
 - ГОСТ 12026—76 Бумага фильтровальная лабораторная. Технические условия
 - ГОСТ 13341-77 Овощи сущеные. Правила приемки, методы отбора и подготовки проб
 - ГОСТ 17792—72 Электрод сравнения хлорсеребряный насыщенный образцовый 2-го разряда
 - ГОСТ 20490-75 Калий марганцовокислый. Технические условия
 - ГОСТ 21400—75 Стекло химико-лабораторное. Технические требования. Методы испытаний

Издание официальное

157

ГОСТ 24104—2001 Весы лабораторные. Общие технические требования

ГОСТ 25336—82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 26313—84 Продукты переработки плодов и овощей. Правила приемки, методы отбора проб ГОСТ 26671—85 Продукты переработки плодов и овощей, консервы мясные и мясорастительные. Подготовка проб для лабораторных анализов

ГОСТ 27853—88 Овощи соленые и квашеные, плоды и ягоды моченые. Приемка, отбор проб ГОСТ 28741—90 Продукты питания из картофеля. Приемка, подготовка проб и методы испытаний

ГОСТ 29169—91 Посуда лабораторная стеклянная. Пипетки с одной отметкой

3 Отбор и подготовка проб

- Отбор проб по ГОСТ 26313, ГОСТ 27853, ГОСТ 28741, ГОСТ 13341, ГОСТ 1750 и нормативной документации на быстрозамороженную продукцию.
- 3.2. Подготовка проб консервированных и быстрозамороженных продуктов, солений и квашений по ГОСТ 26671, продуктов питания из картофеля по ГОСТ 28741, сушеных овощей по ГОСТ 13341, сушеных фруктов по ГОСТ 1750.

4 Фотометрический метод

4.1. Сущность метода

Метод основан на экстракции нитратов из продукта, восстановлении их до нитритов на кадмиевой колонке с последующим фотометрированием раствора азосоединения, образующегося при взаимодействии нитритов с ароматическими аминами.

4.2. Аппаратура, материалы, реактивы

Весы лабораторные общего назначения с метрологическими характеристиками по ГОСТ 24104 с наибольшим пределом взвешивания 200 г, 2-го класса точности.

Весы лабораторные общего назначения с метрологическими характеристиками по ГОСТ 24104 с наибольшим пределом взвешивания 1 кг, 4-го класса точности.

Колориметр фотоэлектрический лабораторный с устройством для считывания значений оптической плотности, с зеленым светофильтром и кюветами рабочей длиной 10 мм или спектрофотометр диапазоном измерения, позволяющим проводить исследования в видимой области спектра, с допускаемой абсолютной погрешностью измерений коэффициента пропускания не более 1 %, с кварцевыми или стеклянными кюветами рабочей длиной 10 мм.

Шкаф сущильный лабораторный с максимальной рабочей температурой до 200 °C и точностью автоматического контроля и регулирования температуры не ниже ±5 °C.

Размельчитель тканей РТ-1 и РТ-2 [1] или гомогенизатор.

Иономер с пределами измерения pH до 14 и пределом допускаемой основной погрешности при измерении pH не более ±0,05.

Бумага фильтровальная лабораторная по ГОСТ 12026.

Баня водяная.

Пипетки по FOCT 29169 исполнения 2, 2-то класса точности, вместимостью 1, 2, 5, 10, 20, 25 см³.

Цилиндр мерный по ГОСТ 1770 исполнения 2, вместимостью 50, 100, 250, 1000 см³.

Колбы мерные по ГОСТ 1770 исполнения 2, вместимостью 50, 100, 250, 500 и 1000 см³.

Кристаллизатор по ГОСТ 25336.

Стаканы химические по ГОСТ 25336 типа ВН, вместимостью 50, 250, 400, 1000 см³.

Колба коническая по ГОСТ 25336 типа Ки-1, вместимостью 250 см³.

Воронка лабораторная по ГОСТ 25336.

Ложка фарфоровая по ГОСТ 9147.

Палочка из химико-лабораторного стекла по ГОСТ 21400.

Установка для восстановления нитратов (рисунок 1), состоящая из:

- стеклянной колонки;
- сборника вместимостью 50 см³ с оттянутым капилляром (внутренний диаметр 1—1,5 мм);
- стеклянной трубки с внутренним диаметром примерно 3 мм;
- резиновой соединительной трубки.

Аммиак водный по ГОСТ 3760 плотностью 0,91 г/см³, ч. д. а. Вода дистиллированная по ГОСТ 6709.

Калий железистосинеродистый по ГОСТ 4207, ч. д. а.

Кадмий сернокислый по ГОСТ 4456, ч. д. а., раствор массовой концентрации 40 г/дм³.

Калий азотнокислый по ГОСТ 4217, х. ч., предварительно перекристаллизованный из воды и высушенный при 115 °C до постоянной массы.

Кислота соляная по ГОСТ 3118 плотностью 1,19 см³, ч. д. а., растворы c (HCl) = 0,1 моль/дм³ и c (HCl) = 2 моль/дм³; раствор (1+1) см³.

Кислота уксусная ледяная по ГОСТ 61, ч. д. а., раствор с объемной долей 15 %.

Натрий азотистокислый по ГОСТ 4197, х. ч., предварительно перекристаллизованный из воды и высушенный при 115 °C до постоянной массы.

Натрия гидроокись по ГОСТ 4328, ч. д. а., раствор c (NaOH)= 1 моль/дм³.

Натрий тетраборнокислый по ГОСТ 4199, ч. д. а.

Динатриевая соль этилендиамин-N, N, N, N-тетрауксусной кислоты, 2-водная (Трилон Б) по ГОСТ 10652, ч. д. а.

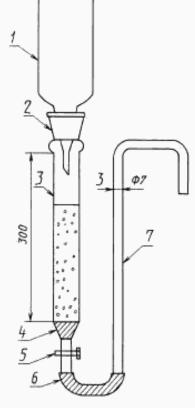
Цинк сернокислый 7-водный по ГОСТ 4174, ч. д. а., раствор массовой концентрации 535 г/дм³.

Цинк уксуснокислый по ГОСТ 5823, ч. д. а.

Цинк гранулированный [2].

Реактивы для проведения цветной реакции:

сульфаниламид (белый стрептоцид) по Государственной фармакопее, X изд., ст. 635;


N-(1-нафтил) этилендиамин дигидрохлорид (НЭДА) [3] или реактив Грисса [4], ч. д. а., раствор массовой концентрации 30 г/дм³ в растворе уксусной кислоты с объемной долей 15 %, или

раствор реактива Грисса, приготовленный из:

кислоты сульфаниловой по ГОСТ 5821, ч. и

1-нафтиламина гидрохлорида [5], ч.

Примечание — Допускается применение другой аппаратуры, материалов и реактивов с техническими характеристиками не ниже указанных.

Стеклянная кадмиевая колонка;
 Соединение на шлифе или резиновая пробка;
 З — сборник;
 4 — стеклянная трубка;
 5 — резиновая соединительная трубка;
 б — кран;
 7 — стеклянная вата

Рисунок 1 — Установка для восстановления нитратов

- 4.3 Подготовка к анализу
- 4.3.1 Приготовление растворов
- 4.3.1.1 Реактив Карреза 1: 106,0 г железистосинеродистого калия растворяют в воде и доводят объем раствора до 1000 см³ водой.

Реактив Карреза 2: 220,0 г уксуснокислого цинка растворяют в смеси воды с 30 см³ ледяной уксусной кислоты и доводят объем раствора до 1000 см³ водой.

Насыщенный раствор буры: 50,0 г тетраборнокислого натрия растворяют в 1000 см³ горячей воды и охлаждают до комнатной температуры.

Аммиачный буферный раствор рН 9,6—9,7: 50 см³ концентрированной соляной кислоты вносят в 500 см³ воды, перемешивают, добавляют 10,0 г трилона Б и 135 см³ концентрированного аммиака, доводят объем до 1000 см³ водой, перемешивают, проверяют рН (потенциометрически) и при необходимости доводят до рН 9,6—9,7.

4.3.1.2 Стандартные растворы азотнокислого калия (для проверки восстановительной способности кадмиевой колонки)

Основной раствор азотнокислого калия, содержащий 1 мг нитрат-иона в 1 см³:

1,6308 г азотнокислого калия вносят в мерную колбу вместимостью 1000 см³, растворяют в воде, доводят объем раствора до метки водой и перемешивают.

Рабочий раствор азотнокислого калия, содержащий 10 мкг нитрат-иона в 1 см3:

пипеткой вносят 10 см³ основного раствора азотнокислого калия в мерную колбу вместимостью 1000 см³, доводят объем раствора до метки водой и перемешивают.

Раствор неустойчив, его готовят в день проведения анализа.

4.3.1.3 Стандартные растворы азотистокислого натрия (для подготовки градуировочного графика)

Основной раствор азотистокислого натрия, содержащий 0,2 мг нитрит-иона в I см3:

0,3000 г азотистокислого натрия вносят в мерную колбу вместимостью 1000 см³, растворяют в воде, доводят объем раствора до метки водой и перемешивают.

Рабочий раствор азотистокислого натрия, содержащий 2 мкг нитрит-иона в 1 см³:

пипеткой вносят 10 см³ основного раствора азотистокислого натрия в мерную колбу вместимостью 1000 см³, доводят объем раствора до метки водой и перемешивают.

Раствор неустойчив, его готовят в день проведения анализа.

4.3.1.4 Растворы для проведения цветной реакции

Раствор сульфаниламида: 2,00 г сульфаниламида растворяют в мерной колбе в 400 см³ раствора соляной кислоты (1+1), доводят до 1000 см³ этим же раствором и перемешивают.

Реактив НЭДА: $0{,}100 \text{ г } N{-}(1{-}\text{нафтил})$ этилендиамина дигидрохлорида растворяют в воде в мерной колбе вместимостью 100 см^3 , доводят водой до метки и перемешивают.

Раствор хранят в холодильнике не более двух недель.

- 4.3.1.5 Приготовление реактива Грисса
- 4.3.1.5.1 Растворяют 2,10 г сульфаниловой кислоты в 250 см³ раствора уксусной кислоты при нагревании на кипящей водяной бане.
- 4.3.1.5.2 Растворяют 0,5210 г 1-нафтиламина гидрохлорида в 30 см³ воды при нагревании на кипящей водяной бане. Раствор еще горячим выливают в 200 см³ раствора уксусной кислоты.
- 4.3.1.5.3 Объединяют растворы, приготовленные по 4.3.1.5.1 и 4.3.1.5.2, в мерной колбе вместимостью 500 см³, доводят до метки раствором уксусной кислоты, перемешивают и, если необходимо, фильтруют (реактив Грисса).

Реактив готовят не позднее чем за день до использования. Хранят в темной склянке в холодильнике и используют в течение двух недель.

4,3.2 Приготовление пористого кадмия

Цинковые гранулы (250—300 шт.) распределяют по дну кристаллизатора и заливают 1000 см^3 раствора сернокислого кадмия. Через 3—4 ч кристаллы кадмия, образовавшиеся на поверхности цинковых гранул, отделяют от цинка пинцетом, помещают в стакан с водой и промывают двумя порциями воды по 1 дм^3 . Воду сливают, в стакан с кадмием добавляют 200— 400 см^3 раствора соляной кислоты c (HCI) = 0.1 моль/дм^3 и переносят в гомогенизатор или размельчитель, измельчают 10 с (до диаметра частиц кадмия 0.8—2 мм).

Измельченный кадмий вместе с раствором соляной кислоты переносят в химический стакан, несколько раз перемешивают стеклянной палочкой и оставляют на ночь под слоем раствора соляной кислоты, после чего перемешивают еще раз, чтобы удалить пузырьки газа из кадмия. Сливают раствор и сразу же промывают кадмий двумя порциями воды по 1 дм³. Кадмий хранят под водой.

4.3,3 Подготовка кадмиевой колонки

Собирают установку согласно рисунку 1. На дно стеклянной колонки помещают тонкий слой стеклянной ваты, колонку заполняют водой и вносят суспензию кадмия по 4.3.2 фарфоровой ложкой на высоту 13—15 см. При заполнении колонки дают воде периодически стекать, следя, чтобы уровень воды не опускался ниже поверхности слоя кадмия. Поверхность кадмия в колонке должна быть всегда покрыта жидкостью.

4.3.4. Регенерирование кадмиевой колонки

Перед каждым анализом кадмиевую колонку промывают последовательно 25 см 3 раствора соляной кислоты c(HCl) = 0.1 моль/дм 3 , 50 см 3 воды и 25 см 3 аммиачного буферного раствора, разбавленного водой в 10 раз. Уровень жидкости всегда должен быть выше слоя кадмия. Между анализами колонку с кадмием заполняют водой.

4.3.5 Проверка восстановительной способности кадмиевой колонки

Восстановительную способность кадмиевой колонки проверяют каждый раз перед проведением серии анализов.

4.3.5.1 При закрытом кране в сборник колонки пипеткой вносят 20 см³ рабочего раствора азотнокислого калия (4.3.1.2) и 5 см³ аммиачного буферного раствора по 4.3.1.1. Устанавливают скорость элюции 3—5 см³/мин и собирают элюат в мерную колбу вместимостью 100 см³. Когда сборник опустеет, стенки его дважды смывают водой порциями по 15 см³ и воду также пропускают через слой кадмия. Собирают около 100 см³ элюата, доводят объем до метки водой и перемещивают.

- 4.3.5.2 Проводят контрольное определение, повторяя операцию, как указано в 4.3.5.1, используя 20 см³ воды вместо раствора азотнокислого калия.
- 4.3.5.3 В две мерные колбы вместимостью 50 см³ вносят пипеткой в одну 10 см³ испытуемого элюата (4.3.5.1), в другую 10 см³ контрольного (4.3.5.2) элюата и далее проводят определение нитритов, как указано в 4.3.6.1, с реактивом НЭДА либо по 4.3.6.2 с реактивом Грисса.

Если содержание нитрит-иона, найденного по градуировочному графику, менее 0,27 мкг в 1 см³ измеряемого раствора (менее 90 % расчетного значения), колонку переподготавливают. Для этого из колонки пористый кадмий переносят в стакан, содержащий раствор соляной кислоты с (HCl) = 2 моль/дм³, выдерживают 10 мин, промывают несколько раз водой, заполняют колонку, как указано в 4.3.3, и снова определяют восстановительную способность кадмиевой колонки по 4.3.5.

4.3.6 Подготовка градуировочного графика

В шесть мерных колб вместимостью 50 см³ каждая пипеткой вносят 0, 2, 5, 10, 15 и 20 см³ рабочего раствора азотистокислого натрия (4.3.1.3).

Для получения окраски используют либо реактив НЭДА и сульфаниламид, либо реактив Грисса. 4.3.6.1 Проведение реакции с реактивом НЭДА

В каждую колбу добавляют воды примерно до 30 см³, пипеткой вносят 5 см³ раствора сульфаниламида (4.3.1.4), перемешивают и оставляют при комнатной температуре в темноте на 5 мин. Затем добавляют пипеткой 1 см³ раствора НЭДА (4.3.1.4), доводят до метки водой, перемешивают, выдерживают в темноте при комнатной температуре 10 мин.

После выдержки (не более 1 ч) измеряют оптическую плотность растворов на спектрофотометре при длине волны 538 нм или на фотоэлектроколориметре с зеленым светофильтром. Контролем служит раствор, не содержащий интритов.

4.3.6.2 Проведение реакции с реактивом Грисса

В каждую колбу вносят пипеткой 10 см³ реактива Грисса (4.3.1.5.3), доводят до метки водой, перемешивают и выдерживают в темноте в течение 25 мин.

После выдержки (не более 1 ч) измеряют оптическую плотность раствора на спектрофотометре при длине волны 522 нм или на фотоэлектроколориметре с зеленым светофильтром. Контролем служит раствор, не содержащий нитритов.

- 4.3.6.3 По полученным данным строят градуировочный график в системе координат: по оси абсцисс концентрация нитрит-иона (0; 0,08; 0,20; 0,40; 0,60; 0,80 мкг/см³), по оси ординат соответствующие значения оптической плотности.
 - 4.4 Проведение анализа
- 4.4.1 В зависимости от предполагаемого содержания нитратов в продукте выбирают массу навески анализируемого продукта, объемы фильтратов и элюатов, используемых по ходу анализа, согласно таблице 1.

Таблица 1

Предполагаемое содержание нитратов, мг/кг	Навеска анализируемой пробы, г	Объем фильтрата для восстановления интратов на колонке, см ³	Объем элизата для цветной реакции, см ³		
575	20	20	20		
75300	20	20	10		
300-600	20	10	10		
600-1400	10	10	10		
1400-2500.	10	10	5		

Примечание — Навески проб сущеных продуктов питания из картофеля, сущеных овощей и фруктов уменьшают в четыре раза по сравнению с указанными в таблице.

4.4.1.1 Навеску исследуемого продукта, взятую в химический стакан, количественно переносят с помощью 100 см³ теплой воды (около 60 °C) в мерную колбу вместимостью 250 см³, добавляют 5 см³ раствора буры и 20 см³ буферного раствора, перемешивают, затем добавляют последовательно по 5 см³ раствора Карреза 1 и Карреза 2, встряхивая после каждого добавления. Выдерживают 15 мин на водяной бане при температуре 60 °C. Охлаждают, доводят объем раствора до метки водой, фильтруют.

При получении мутного фильтрата в качестве осадителей можно использовать 5 см 3 раствора сернокислого цинка и 5-10 см 3 раствора гидроокиси натрия или при повторении экстракции применять большее количество осаждающих реактивов и контролировать pH. Значение pH должно быть более 9.0.

Фильтрат используют для определения нитритов по 4.4.2 и нитратов по 4.4.3.

4.4.1.2 Готовят контрольный раствор на реактивы, как указано в 4.4.1.1, но вместо пробы продукта добавляют воду.

4.4.2 Определение нитритов

В две мерные колбы вместимостью 50 см³ каждая вносят соответственно 20 см³ фильтрата по 4.4.1.1 и 20 см³ контрольного раствора по 4.4.1.2 и проводят цветную реакцию дибо с реактивом НЭДА, как указано в 4.3.6.1, дибо с реактивом Грисса, как указано в 4.3.6.2.

Измеряют оптическую плотность раствора по отношению к контрольному, как указано в 4.3.6.1 или 4.3.6.2.

Примечание — В случае получения интенсивно окращенных фильтратов из продуктов, содержащих антоциановые пигменты (сливы, вишни, черешни и др.), при фотометрировании вместо раствора по 4.4.1.2 в качестве контрольного используют раствор, который готовят следующим образом: к 20 см³ фильтрата по 4.4.1.1 добавляют 5 см³ раствора сульфаниламида по 4.3.1.4 (при использовании в анализе реактива НЭДА) или 5 см³ раствора сульфаниловой кислоты по 4.3.1.5.1 (при использовании в анализе реактива Грисса), доводят объем до 50 см³ и перемешивают.

По найденному значению оптической плотности с помощью градуировочного графика определяют массовую концентрацию нитритов в микрограммах в 1 см^3 измеряемого раствора (c_1) .

4.4.3 Определение нитратов

- 4.4.3.1 В химический стакан вносят 10 или 20 см³ фильтрата (4.4.1.1) и 5 см³ буферного раствора, смесь переносят в сборник колонки и пропускают через слой кадмия. Элюат из колонки собирают в мерную колбу вместимостью 100 см³. Стакан и сборник смывают двумя порциями воды по 15 см³ и воду также пропускают через слой кадмия. Затем заполняют сборник водой и продолжают элюцию. Устанавливают скорость элюции 3—5 см³/мин. Собирают около 100 см³ элюата, доводят объем до метки водой и перемешивают (испытуемый элюат).
- 4.4.3.2 Для получения контрольного элюата вместо фильтрата через кадмиевую колонку пропускают контрольный раствор, приготовленный по 4.4.1.2.
- 4.4.3.3 В две мерные колбы вместимостью 50 см³ каждая вносят: в одну 5—20 см³ испытуемого элюата, в другую — такой же объем контрольного элюата и проводят определение либо с реактивом НЭДА, как указано в 4.3.6.1, либо с реактивом Грисса, как указано в 4.3.6.2. По найденной оптической плотности раствора с помощью градуировочного графика определяют массовую концентрацию нитритов в микрограммах в 1 см³ измеряемого раствора (с).
 - 4.5 Обработка результатов
- 4.5.1 Содержание нитратов в продукте X, мг/кг, (в расчете на нитрат-ион) вычисляют по формуле

$$\dot{X} = 1,348 \left(\frac{cV_1 V_2 V_3}{mV_4 V_5} - \frac{c_1 V_1 V_2}{mV_6} \right), \tag{1}$$

- где 1,348 коэффициент пересчета нитритов в нитраты, равный отношению молекулярной массы нитрат-иона M (NO $\frac{1}{2}$);
 - массовая концентрация нитрит-иона, найденная по градуировочному графику, мкг/см³ (по 4.4.3.3);
 - V_1 общий объем экстракта, см³ (V_1 = 250 см³);
 - V_2 общий объем колориметрируемого раствора, см³ ($V_2 = 50$ см³);
 - V_3 общий объем элюата, см³ ($V_3 = 100 \text{ см}^3$);
 - с₁ массовая концентрация нитрит-иона, найденная по градуировочному графику, мкг/см³ (по 4.4.2);
 - т масса навески пробы продукта, взятого на анализ, г;
 - V_4 объем фильтрата, взятого на колонку для восстановления, см³;
 - V_5 объем элюата, взятого на цветную реакцию, см³;
 - V₆ объем фильтрата, взятого для цветной реакции, см³.
- 4.5.2 За окончательный результат анализа принимают среднее арифметическое результатов (\overline{x}) двух параллельных определений, допустимое расхождение между которыми не должно превышать 15 % по отношению к среднему арифметическому при P = 0.95.
- 4.5.3 Допустимое расхождение между результатами анализов, выполненных в двух разных лабораториях, не должно превышать 25 % по отношению к среднему арифметическому при P = 0.95.

5 Ионометрический метод

Сущность метода

Метод основан на извлечении нитратов раствором адюмокалиевых квасцов с последующим измерением концентрации нитратов с помощью ионоселективного нитратного электрода и является экспрессным.

Метод применяется для продуктов, не содержащих хлоридов, и продуктов, в которых содержание хлоридов не превышает содержание нитратов более чем в 50 раз.

Аппаратура, материалы, реактивы

Весы лабораторные общего назначения с метрологическими характеристиками по ГОСТ 24104 с наибольшим пределом взвешивания 200 г, 2-го класса точности.

Весы лабораторные общего назначения с метрологическими характеристиками по ГОСТ 24104 с наибольшим пределом взвешивания 1000 г., 4-го класса точности.

Шкаф сушильный лабораторный с максимальной рабочей температурой до 200 °C и точностью автоматического контроля и регулирования температуры не ниже ±5 °C.

Размельчители тканей РТ-1 и РТ-2 [1] или гомогенизатор.

Ионоселективный нитратный электрод ЭМ-NO₃-01 [6] или электрод ЭИМ-11 «Квант», или другие электроды, имеющие такие же метрологические характеристики.

Электрод сравнения хлорсеребряный насыщенный образцовый 2-го разряда по ГОСТ 17792.

Иономер типа И-120 или ЭВ-74 или милливольтметры pH-340 или pH-121, или нитратомер HM-002, или МИКОН, или другие аналогичные приборы с погрешностью измерения не более 5 мВ $(0.05 \ pNO_3)$.

Квасцы алюмокалиевые по ГОСТ 4329, ч. д. а., раствор с массовой долей 1 %.

Калий марганцовокислый по ГОСТ 20490, ч.

Калий хлористый по ГОСТ 4234, ч. д. а.

Кислота серная по ГОСТ 4204, ч.

Перекись водорода по ГОСТ 10929, х. ч.

Натрий азотнокислый по ГОСТ 4168, х. ч., предварительно перекристаллизованный из воды и высушенный при температуре 115 °C до постоянной массы.

Цилиндр мерный по ГОСТ 1770 исполнения 2, вместимостью 50 см³.

Колбы по ГОСТ 25336 плоскодонные типа II или конические типа Ки, вместимостью 100 см3.

Колбы мерные по ГОСТ 1770 исполнения 2, вместимостью 100 и 1000 см3.

Стаканы химические по ГОСТ 25336 типа ВН, вместимостью 100 см³.

Пипетки по ГОСТ 29169 исполнения 2, 2-го класса точности, вместимостью 10 см³.

Баня водяная.

Вода дистиллированная по ГОСТ 6709.

Аппарат универсальный для встряхивания жидкости в колбах и пробирках АВУ-6с [7].

Бумага масштабно-координатная марки Д, по ГОСТ 334.

5.3 Подготовка к испытанию

5.3.1 Приготовление растворов сравнения

Основной раствор азотнокислого калня или азотнокислого натрия c (NO₃) = 0,1 моль/дм³ (ρ C_{NO₃} = -lg C = 1):

10,110 г азотнокислого калия или 8,500 г азотнокислого натрия растворяют в растворе алюмокалиевых квасцов и доводят объем до 1000 см³ этим же раствором.

Раствор хранят не более одного года. При появлении мути или осадка раствор заменяют свежеприготовленным.

Раствор сравнения
$$c$$
 (NO₃) = 0,01 моль/дм³ ($pC_{NO_3} = -\lg C = 2,0$):

готовят в день проведения испытания из основного раствора, ε (NO₃) = 0,1 моль/дм³, разведением в 10 раз. Для этого отбирают пипеткой 10 см³ раствора, вносят в мерную колбу вместимостью 100 см³ и доводят объем до 100 см³ раствором алюмокалиевых квасцов, перемешивают.

Раствор алюмокалиевых квасцов используют для всех последующих разведений.

Раствор сравнения
$$c$$
 (NO₃) = 0,001 моль/дм³ ($pC_{NO_3} = -\lg C = 3$):

готовят в день проведения испытания разведением в 10 раз раствора c (NO₃) = 0,01 моль/дм³. Раствор сравнения c (NO₃) = 0,0001 моль/дм³ (pC_{NO₃} = -lg C = 4):

готовят в день проведения испытания разведением в 10 раз раствора $c(NO_3) = 0.001$ моль/дм³.

- 5.3.2 Приготовление экстрагирующего раствора для продуктов, содержащих овощи семейства крестоцветных
- 1,00 г марганцовокислого калия и 0,6 см³ концентрированной серной кислоты растворяют в растворе алюмокалиевых квасцов и доводят объем раствора до 1000 см³ этим же раствором.
 - 5.3.3 Подготовка электродов к работе

Мембранный нитратный ионоселективный электрод и хлорсеребряный электрод готовят к работе в соответствии с инструкцией, прилагаемой к электродам.

Перед началом работы мембрану ионоселективного электрода вымачивают в течение 24 ч в растворе азотнокислого калия или азотнокислого натрия c (NO₃) = 0,1 моль/дм³ при температуре (20 \pm 5) °C.

Между измерениями электрод хранят в растворе сравнения c (NO₃) = 0,0001 моль/дм³. При длительных перерывах в работе электрод хранят сухим; перед измерением электрод вымачивают в течение 1—2 ч в растворе сравнения c (NO₃) = 0,1 моль/дм³.

Вспомогательный хлорсеребряный электрод хранят в воде.

5.3.4 Подготовка проб

10,0 г анализируемого продукта, подготовленного по разделу 3, помещают в плоскодонную или коническую колбу, приливают 50 см³ раствора алюмокалиевых квасцов, закрывают пробкой и встряхивают на аппарате для встряхивания в течение 5 мин.

В соках, напитках, коктейлях определение проводят непосредственно в продуктах без разведения, добавляя 1 г алюмокалиевых квасцов на 100 г продукта.

10,0 г сушеных овощей или фруктов, подготовленных по разделу 3, помещают в плоскодонную или коническую колбу, приливают 100 см³ раствора алюмокалиевых квасцов, нагревают на водяной бане до размятчения продуктов (около 5 мин), охлаждают до комнатной температуры, встряхивают на аппарате в течение 5 мин.

Проведение анализа

Нитратный электрод подключают на задней панели прибора к гнезду «Изм», а хлорсеребряный электрод — к гнезду «Всп». Электроды погружают в испытуемую пробу и проводят определение потенциала электродной пары E, мВ, при этом клавишу «Род работ» ставят в положение «мВ», после измерения отключают сеть нажатием клавиши «I».

Перед каждым измерением раствора сравнения или испытуемого раствора электроды промывают несколько раз водой, осущают фильтровальной бумагой, промывают раствором сравнения или испытуемым раствором и лишь затем погружают в измеряемый раствор. Показания прибора считывают не ранее чем через 1 мин после прекращения дрейфа показания прибора. Определение испытуемых проб проводят одновременно с калибровкой электродов.

Калибровку электродов проводят путем измерения потенциалов *E*, мВ, в растворах сравнения, приготовленных по 5.3.1, при комнатной температуре. Измерение проводят, начиная с растворов низких концентраций, промывая каждый раз электрод раствором более высокой концентрации.

По полученным данным строят градуировочный график.

По оси абсцисе откладывают значения pC_{NO_3} , соответствующие растворам сравнения азотнокислого калия или азотнокислого натрия:

```
c (NO<sub>3</sub>) = 0,1 моль/дм<sup>3</sup> (pC_{NO_3} = 1);

c (NO<sub>3</sub>) = 0,01 моль/дм<sup>3</sup> (pC_{NO_3} = 2);

c (NO<sub>3</sub>) = 0,001 моль/дм<sup>3</sup> (pC_{NO_3} = 3);

c (NO<sub>3</sub>) = 0,0001 моль/дм<sup>3</sup> (pC_{NO_3} = 3);
```

По оси ординат соответствующее значение потенциала Е, мВ.

Калибровку электродов проверяют не менее трех раз в течение рабочего дня, используя каждый раз свежие порции растворов сравнения.

Электрод имеет линейную функцию в диапазоне pC_{NO_3} от 1 до 4 с наклоном (56±3) мВ на единицу pC_{NO_3} при температуре (25±5) °C.

Если характеристика электрода отличается от заданной, электрод не пригоден к работе.

Испытуемую пробу перемещивают, помещают в стеклянный стаканчик, погружают в нее электроды и измеряют потенциал электродной пары E, мВ. По полученному значению E по градуировочному графику находят значение $p\mathbf{C}_{\mathrm{NO}_{\mathrm{A}}}$.

5.5 Обработка результатов

Содержание нитратов, мг/кг, или массовую концентрацию, мг/дм 3 , находят по значению pC_{NO} , в соответствии с приложением A.

За окончательный результат анализа принимают среднее арифметическое результатов двух параллельных определений, допустимое расхождение между которыми по отношению к среднему арифметическому при P=0.95 не должно превышать, %:

- 30 при содержании нитратов до 200 мг/кг;
- 25 при содержании нитратов от 200 мг/кг и выше.

6 Требования техники безопасности при проведении анализов

Помещение, в котором проводится определение нитратов, должно быть оборудовано приточно-вытяжной вентиляцией.

Работу с кадмием, солями кадмия, I-нафтиламином и реактивом НЭДА необходимо проводить в вытяжном шкафу лаборатории с использованием индивидуальных средств защиты (респиратора, защитных очков, резиновых перчаток), с соблюдением правил личной гигиены.

ПРИЛОЖЕНИЕ А (обязательное)

СОДЕРЖАНИЕ НИТРАТОВ В ПРОДУКТАХ В ЗАВИСИМОСТИ ОТ ЗНАЧЕНИЯ Р С NO 3

Таблица А.1 — Содержание нитратов, мг/кг, в продуктах с содержанием сухих веществ ниже 20 %

₽ C _{NO3}	Сотые доли ρ С $_{\mathrm{NO}_{3}}$									
	00	0.1	02	03	04	65	06	0.7	08	09
	Содержание нитратов, мг/кг									
1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6	9188 7299 5798 4605 3658 2906 2308 1833 1456 1157 919 730 580 461 366 291 231 183 146 116 92	8979 7133 5666 4500 3575 2840 2256 1792 1428 1180 898 713 567 450 357 284 226 179 142 113	8775 6970 5537 4398 3439 2775 2204 1751 1391 1105 877 679 554 440 349 277 220 175 139 110 87	8575 6812 5411 4298 3414 2712 2154 1711 1359 1080 858 681 541 430 341 271 215 171 136 108 85	8380 6656 5287 4200 3336 2650 2105 1672 1328 1055 838 666 529 420 334 265 210 167 133 105 83	8189 6505 5167 4104 3260 2590 2057 1634 1031 819 650 517 410 326 259 206 163 130 103 81	8003 6357 5049 4011 3186 2531 2010 1597 1268 1007 800 636 505 401 319 253 201 160 127 101 80	7843 6212 4935 3920 3113 2473 1964 1560 1239 985 732 621 493 392 311 247 196 156 156 124 98 78	7643 6071 4822 3830 3043 2417 1920 1525 1211 962 764 607 482 382 304 242 192 1521 196 76	7459 5933 4712 3743 2973 2362 1876 1490 1184 940 747 593 471 374 297 236 188 149 118 94
3.7 3.8 3.9 4.0	73 58 46 36	71 56 45	69 .55 44 —	68 54 43	66 53 42 —	65 52 41 —	64 51 40	62 49 39 —	61 48 38 —	59 47 37 —

П р и м е ч а н и е — Данные приведены для разбавления навески в 5 раз; в случае разбавления навески в 10 раз (сухие овощи и фрукты), результаты анализа увеличивают в 2 раза.

Таблица А.2 - Содержание нитратов, мг/кг, в продуктах с содержанием сухих веществ 20-35 %

p C _{NÓ3}	Сотые доли $p \subset_{NO_1}$									
,	00	01	02	03	0-4	0.5	06	0.7	80	09
	Содержание нитратов, мг/кг									
1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3	9033 7175 5699 4527 3596 2856 2269 1802 1432 1137 903 717 570 453 360 286 227 180	8827 7012 5570 4424 3514 2791 2217 1761 1399 1111 883 701 557 442 351 279 222 176 140	8626 6852 5443 4323 3434 2728 2161 1721 1367 1086 863 685 544 432 343 273 217 172 137	8430 6696 5319 4225 3356 2666 2117 1682 1336 1061 843 670 532 422 336 267 212 168 134	8238 6544 5198 4129 3280 2605 2069 1644 1306 1037 824 654 520 413 328 261 207 164 131	8050 6395 5079 4035 3205 2546 2022 1606 1276 1013 805 639 508 403 320 255 202 161 128	7867 6249- 4964 3943 3132 2488 1976 1570 1247 990 787 625 496 394 313 249 198 157 125	7688 6107 4851 3853 3061 2431 1931 1534 1218 968 769 611 485 385 309 243 193 153 121	7513 5968 4740 3765 2991 2376 1887 1499 1191 946 751 597 474 377 299 238 189 150	7342 5832 4633 3680 2923 2322 1844 1465 1164 924 734 583 463 363 292 232 184 146 116
3.5 3.6 3.7 3.8 3.9 4.0	114 90 72 57 45 36	11) 88 70 56 44	109 86 68 54 43	106 84 67 53 42	104 82 65 52 41	101 80 64 50 40	99 78 62 49 39	97 77 61 48 38	95 75 60 47 37	92 73 58 46 36
		с — Данн	ые привед	ены для ра	збавления	навески :	в 5 раз.		•	

Таблица A.3 — Массовая концентрация нитратов, $\mathrm{Mr/дм}^3$, в соках, напитках, коктейлях

p C _{NO3} .	Сотые доли <i>р</i> С _{NO₃}									
	,00,	01	: 02	.03	04	0.5	06	07	80	09
			Macco	вая конце	нтрация н	итратов, в	аг/дм³			
1.0	6200	6058	5920	5786	5654	5525	5400	5277	5157	4050
1.1	4924	4812	4700	4598	4491	4389	4289	4191	4096	4003
1.2	3910	3823	3736	3651	3567	3486	3407	3329	3254	3179
1.3	3107	3036	2969	2900	2833	2769	2706	2644	2584	2527
1.4	2468	2412	2357	2304	2251	2200	2149.	2101	2053	2006
1.5	1960	1915	1872	1829	1788	1747	1707	1668	1630	1594
1.6	1597	1521	1487	1453	1420	1388	1356	1325	1295	1265
1.7 1.8	1237 983	1219 960	1181 938	1154 917	1128 896	1102 875	1077 856	1052	1029 817	1005 798
1.9	780	762	745	728	711	695	680	836 664	649	634
2.0	620	605	690	580	565	552	540	527	515	504
2.1	402	481	470	460	450	440	430	420	410	400
2.2	390	380	370	365	360	350	340	330	325	320
2.2	310	300	295	290	280	275	270	260	255	250
2.4	245	240	235	230.	225	220	215	210	205	200
2.5	195	190	185	180	175	170	170	165	160	160
2.6	155	150	145	140	140	135	130	130	125	125
2.7	120.	120	120	115	110	110	110	105	100	100
2.8	98	96	94	92	90	87	85	84	82	80
2.9	78	76	.74	73	71	69	68	66	65	63
3.0	62	62	. 60	59	- 58	56	55	54	53	52

Окончание табл. А.З

$p \subset_{NO_3}$	Сотые доли p С $_{NO_1}$										
,	00	0.1	02	03	0-4	0.5	96	0.7	08.	09	
	Массовая концентрация нитратов, мг/дм ³										
3.1	48	48	47	46		44 ·	43	42	41	40	
3.2	39	38	37	36	45 35	34	34	33	33 -	32	
3.3	31	_	_	_	_	28	_		_	_	
3.3 3.4 3.5	24		_		_	22 :	_	_	_		
3.5	19		_		· <u> </u>	_ "	_	_	_		
3.6 3.7	15	_	_	. 	_	_	_	_	_	_	
3.7	12	-	_	_	-	_	_	-	_	_	
3.8 3.9	-01	_	-	·	<u>-</u>	_	_		_	_	
	-8	_	-		-	_			_	_	
4.0	6		_	. —	_	_	_	-	_	_	

ПРИЛОЖЕНИЕ Б (справочное)

Библиография

[1] 19 64—1—1505—79	Размельчитель тканей
[2] TV 609529486	Цинк гранулированный
[3] TV 6-09-15-420-80	N-(1-Нафтил) этилендиамин дигидрохлорид:
[4] TV 6-09-3569-86	Реактив Грисса
[5] TV 6090766176	1-Нафтиламин гидрохлорид
[6] TY 25.05.2238—77	Ионоселективный интратный электрод ЭМ-NO ₃ -01
[7] TV 64-1-2451-78	Аппарат универсальный для встряхивания жидкостей в колбах и пробирках АВУ-6с

MKC 67.080

H59

ОКСТУ 9109

Ключевые слова: продукты переработки плодов и овощей, фотометрический метод определения нитратов, стандартные растворы азотнокислого калия и азотнокислого натрия, реактив НЭДА, реактив Грисса, кадмиевая колонка, градуировочный график, ионометрический метод определения нитратов, ионоселективный нитратный электрод, электрод ЭИМ-11 «Квант», иономер, милливольтметры, нитратомер

12.