ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ЛАЗЕРЫ ИЗМЕРИТЕЛЬНЫЕ

МЕТОДИКА ПОВЕРКИ

Издание официальное

63 5-94/248

ГОССТАНДАРТ РОССИИ Москва

Предисловие

1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 206 «Эталоны и поверочные схемы» и НПО «ВНИИМ им. Д. И. Менпелеева»

ВНЕСЕН Управлением технической политики в области метрологии Госстандарта России

- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 28 ноября 1994 г. № 294
- 3 ВВЕДЕН ВПЕРВЫЕ

© Издательство стандартов, 1995

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госстандарта России

FOCT P 8.559-94

СОДЕРЖАНИЕ

į	Область применения					-	-		-	•			-						1		•	1	1
2	Операции поверки .						r				1	,	,		,	•	,				,	-	1
3	Средства поверки .		i	i				÷				1		1		1						÷	2
4	Условия поверки и под	IJΟ	ros.	ки ј	с пр	юре	ges	CHIC	по	вер	KH			4	-					4			3
5	Требования безопасно	ULB	и:	pet	бова	Hite	e K	КВа	aun e	фик	ano	Œ.	Bot	iep	OKTO	e.Alsa		-	-		-	-	3
6	Проведение поверки и	o6	pa6	отк	ар	кзуг	њга	NTOB	83	мер	¢ш	4Ñ			i.	,		-					4
7	Оформление результат	08	nor	ens	си												÷				_		10

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственная система обеспечения единства измерений

лазеры измерительные

Методика поверки

State system for ensuring the uniformity of measurements.

Measuring lasers. Methods for verification

Дата ввеления 1996—01—01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на лазеры непрерывного излучения и устанавливает методику первичной и периодической поверок.

2 ОПЕРАЦИИ ПОВЕРКИ

 При проведении поверки должны быть выполнены операции, указанные в табл. 1.

Т а б л и д а 1 — Наименование операций поверки и номера пунктов стандарта

Наименование операции	Номер пункса			
1 Внешний осмотр	6.1			
2 Опробование	6.2			
3 Определение метрологических характеристик:				
3.1 Измерение длины волны излучения поверяемого дазера методом				
прямых измерений на эталонном (образцовом) измерителе длин волн				
ИДВ-2М	6.3			
3.2 Определение длины волны излучения поверяемого дазера				
методом сличения при помощи компаратора	6.3			
3.3 Определение доверительной погрешности	6.3			

Издание официальное

3 СРЕДСТВА ПОВЕРКИ

 При проведении поверки должны быть применены средства, указанные в таблице 2.

Таблица 2 - Средства поверки и вспомогательные устройства

Номор пункта стандарта	Средства поверки и ик нормативно-зехнические карактеристики
6.3.1	Измеритель длин воли лазеров непрерывного излучения типа ИДВ-2М Дт2.859.004ТУ — рабочий эталоп 2-го разряда (образцовое средство измерений 2-го разряда) или ИДВ другого типа с зналогичными характеристиками. Спектральный диапазон 0,38±12 мкм, погрешность 10 ⁻² >10 ⁻⁶ .
6.3.2	Частотно-стабилизированные дазеры непрерывного излучения — вторичные эталоны, рабочие эталоны 1-го и 2-го разрядов (образцовые средства измерений 1-го и 2-го разрядов). Ддина волны излучения в инапазоне 0,4+11 мкм, погрешность воспроизведения 3·10 ⁻¹¹ +10 ⁻⁶ . Фотоэлектрический измерительный преобразователь. Спектральный диапазон — в соответствии с ддиной водны поверяемого дазера. Частотный диапазон 10 ⁸ +3·10 ¹ Гц. Электронно-счетный частотомер. Диапазон рабочих частот 10 ⁸ +3·10 ¹ Гц, время счета 0,1+10 с. Анализатор спектра. Диапазон рабочих частот 10 ⁶ +3·10 ¹ Гц. Отражающее зеркало. Коэффициент отражения на длине водны поверяемого дазера — не менее 90 %. Полупрограчное зеркало. Коэффициент отражения на длине водны поверяемого дазера — (50±10) %, поглощение — не более 10 %.

Примечания

- Все используемые средства измерений должны имень свидетельство о поверке или калибровке.
- 2 Частотно-стабилизированные дазеры, используемые в качестве средства поверки, должны работать в режиме одночастотной генерации на той же спектральной линии, что и поверяемый дазер. Потрешность воспроизведения длины волны эталойного (образдового) дазера должна быть не менее чем в три раза меньше погрешности поверяемого дазера.

4 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К ПРОВЕДЕНИЮ ПОВЕРКИ

4.1 При проведении поверки должны быть соблюдены следующие условия:

 Температура окружающей среды, "С
 20±5

 Относительная влажность воздуха, %
 65±15

 Атмосферное давление, кПа (мм рт. ст.)
 101,3±4,0 (760±30)

Изменение температуры окружающей среды в процессе непрерывной работы лазеров при измерении должно соответствовать требованиям технической документации на лазер конкретного типа.

- 4.2 Параметры режима лазеров при измерении должны соответствовать указанным в НД на лазер конкретного типа.
- 4.3 Интервал времени от включения лазера до начала измерсния должен соответствовать установленному в НД на лазер конкретного типа.
- 4.4 Все элементы измерительной установки должны быть жестко закреплены на прочном основании. Уровень вибрации — не более 10⁻² м/с² в полосе частот 1÷100 Гц.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ И ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЯ

- 5.1 Общие требования безопасности при работе с лазерами и требования безопасности к помещению для проведения измерений и размещению оборудования должны соответствовать «Санитарным нормам и правилам устройства и эксплуатации лазеров», утвержденным Минздравом СССР от 21.04.81 № 2392—81, и «Правилам техники безопасности и промышленной санитарии в электронной промышленности».
- 5.2 К проведению поверки допускают лиц, имеющих удостоверение соответствующей квалификационной группы на право работы с электроустановками.
- Лица, проводящие поверку, должны руководствоваться эксплуатационной документацией.
- 5.4 Электронная аппаратура должна быть заземлена, кожухи электронной аппаратуры во время работы должны быть закрыты, рабочее место должно быть обеспечено защитным диэлектрическим ковриком.
- 5.5 Все кабели связи между электронной аппаратурой, а также между электронной аппаратурой и лазерами должны быть подключены до включения приборов в сеть.

- 5.6 Запрещается во время работы отсоединять кабели связи, а также заменять предохранители.
- 5.7 Запрещается вскрывать блоки приборов при включенных в сеть кабелях питания.
- 5.8 В дазерах должна быть предусмотрена световая индикация, извещающая о подаче на него электрического напряжения. Сигнальные лампы должны иметь четкие надписи, указывающие их назначение.
- 5.9 На дверях помещения, в котором установлены лазеры, должна быть надпись «ОСТОРОЖНО! ЛАЗЕРНОЕ ИЗЛУЧЕНИЕ».
- При работе с лазерами должны быть предусмотрены средства индивидуальной защиты.
- 5.11 Техническое обслуживание, ремонтные и наладочные работы проводят только после отключения аппаратуры от питающей сети. Расстыковку высоковольтного разъема разрешается проводить не ранее чем через 2 мин после отключения источника питания от сети.

6 проведение поверки и обработка результатов измерений

- 6.1 Виешний осмотр
- 6.1.1 При внешнем осмотре должно быть установлено соответствие поверяемого лазера следующим требованиям:
 - наличие полного комплекта прибора в соответствии с паспортом;
- наличие четкой маркировки типа прибора, товарного знака предприятия-изготовителя, заведского номера, года выпуска;
 - наличие заводской пломбы-клейма завода-изготовителя;
- наличие четкой гравировки цифр и надписей, указывающих на назначение;
- отсутствие дефектов и повреждений наружных поверхностей, нарушающих работу лазера, ухудшающих его внешний вид или затрудняющих поверку;
 - отсутствие царапин, сколов и пятен на оптических деталях.
- 6.2 Опробование и подготовка к проведению поверки

При опробовании должны быть выполнены следующие операции:

- 6.2.1 Проверена плавность работы юстируемых узлов и четкость срабатывания фиксирующих механизмов.
- 6.2.2 Рабочий эталон (образцовое средство измерений), поверяемый лазер и другие средства поверки установлены и соединены по схеме, соответствующей выбранному методу поверки.

- 6.2.3 Поверяемый и эталонный лазеры установлены на юстируемых подставках с целью удобства дальнейшей юстировки элементов схемы и точности совмещения лазерных пучков в пространстве.
- 6.2.4 Излучатель поверяемого лазера отъюстирован таким образом, чтобы пучок лазерного излучения попадал в центры оптических элементов и приемных площадок фотоэлементов измерительного преобразователя.
- 6.2.5 Проверяют работу всех приборов в режиме «самоконтроль» в соответствии с инструкциями по эксплуатации на них.
- 6.3 Определение метрологических характеристик
- 6.3.1 Измерение длины волны излучения поверяемого лазера методом прямых измерений на эталонном (образцовом) измерителе длин волн ИДВ-2М
- 6.3.1.1 Собирают измерительную установку в соответствии со структурной схемой рисунка 1, устанавливают поверяемый лазер и направляют его излучение на вход «Аттестуемый лазер» измерителя длин волн.

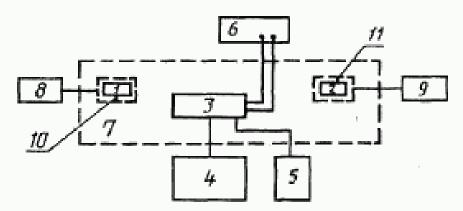


Рисунок 1 — Структурная схема измерительной установки для определения длины волны лазера методом прямых измерений на эталонном (образцовом) измерителе длин волн ИЛВ-2М

- 6.3.1.2 Проводят юстировку лазерных пучков опорного лазера (входящего в комплект эталонного (образцового ИДВ) и поверяемого лазера в соответствии с инструкцией по эксплуатации на эталонный (образцовый) ИДВ.
- 6.3.1.3 Проводят 25 измерений длины волны поверяемого лазера. При этом через каждые 5 измерений проводят операции по 6.3.1.2.

6.3.1.4 За значение измеряемой длины волны принимают среднее арифметическое значение результатов измерений

$$\widetilde{\lambda} = \frac{1}{n} \sum_{i=1}^{n} \lambda_{i}, \quad (1)$$

где n — число измерений;

 λ_i — результат i-го измерения, нм.

6.3.1.5 Среднее квадратическое отклонение результата измерений $S(\lambda)$ вычисляют по формуле

$$S(\overline{\lambda}) = \sqrt{\frac{\sum_{j=1}^{n} a_j^2}{n(n-1)}},$$
 (2)

rne $a_i = |\lambda_i - \overline{\lambda}|$.

6.3.1.6 Доверительные границы є случайной погрешности Θ результата измерений при доверительной вероятности P=0,95 вычисляют по формуле

$$\varepsilon = t \cdot S(\overline{\lambda}),$$
 (3)

где t — коэффициент Стьюдента для n = 25 (t = 2,064).

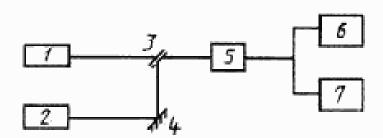
- 6.3.1.7 За неисключенную систематическую погрешность ⊕ поверяемого лазера принимают неисключенную систематическую погрешность эталонного (образцового) ИДВ в соответствующем спектральном диапазоне.
- 6.3.1.8 Доверительную границу суммарной погрешности результата измерений А вычисляют по формуле

$$\Delta = KS_{\tau}, \tag{4}$$

где К — коэффициент, зависящий от соотношения случайной и неисключенной систематической погрешностей и определяемый по формуле

$$K = \frac{\varepsilon + \Theta}{S(\lambda) + \Theta / \sqrt{3}};$$
 (5)

 S_{z} — суммарное среднее квадратическое отклонение результата измерений, определяемое по формуле


$$S_{\Sigma} = \sqrt{\Theta^2 / + S^2(\overline{\lambda})}. \qquad (6)$$

6.3.1.9 Результаты измерений $\bar{\lambda}$, нм, представляют в форме

$$\bar{\lambda} \pm \Delta$$
, P . (7)

Лазеры считают прошедшими поверку, если значение длины волны укладывается в пределы, указанные в ТУ (или при отсутствии технических условий — в паспорте) на лазер конкретного типа.

- 6.3.2 Определение длины волны излучения поверяемого дазера методом сличения при помощи компаратора (метод гетеродинирования).
- 6.3.2.1 Длину волны излучения поверяемого лазера определяют методом оптического гетеродинирования, сравнивая частоту излучения поверяемого лазера с частотой излучения эталонного (образцового) лазера. Сравнение частот проводят путем смещения излучений поверяемого и эталонного (образцового) лазеров с измерением разностной частоты электронно-счетным частотомером.
- 6.3.2.2 Собирают измерительную установку в соответствии со структурной схемой рисунка 2. Готовят приборы к работе в соответствии с эксплуатационной документацией на них.

I — поверяємый жазер; 2 — образцовый жазер; J — полущропрачное зервало; d — отражавельное верхало; J — фотовлентрический жамерательный преобразователь; d — частопомер; J — анализатер светра.

Рисунок 2 — Структурная схема измерительной установки для определения длины волны лазера методом гетеропинирования

- 6.3.2.3 Включают поверяемый и эталонный (образцовый) лазеры и прогревают их в течение времени, указанного в эксплуатационной документации на них.
- 6.3.2.4 Устанавливают поверяемый и эталонный (образцовый) лазеры таким образом, чтобы плоскости поляризации их излучений совпадали.
- 6.3.2.5 Совмещают пучки излучения поверяемого и эталонного (образцового) лазеров при помощи зеркал 3 и 4 и направляют их на чувствительный элемент фотоэлектрического измерительного преобразователя.
- 6.3.2.6 Наблюдают сигнал разности частоты на экране анализатора спектра и юстировкой положения лазеров и зеркал 3 и 4 добиваются максимального значения его амплитуды.
- 6.3.2.7 Проводят 5 серий измерений значения разностной частоты. Каждая серия должна включать 5+7 измерений, интервал между сериями 0.5+1 ч.
- 6.3.2.8 Среднее значение разностной частоты \overline{f} , Γ ц, вычисляют по формуле

$$\overline{f} = \frac{1}{n} \sum_{i=1}^{n} f_i, \quad (8)$$

где n. — число измерений;

 f_i — результат *i*-го измерения, Γ ц.

6.3.2.9 Длину волны излучения поверяемого лазера λ, нм, вычисляют по формуле

$$\lambda = \lambda_0 \left(1 \pm \frac{\overline{f}}{v_\alpha} \right), \tag{9}$$

где λ_0 — длина волны излучения эталонного (образцового) лазера, нм; ν_0 — частота излучения эталонного (образцового) лазера, $\Gamma_{\rm LL}$.

Знаки (плюс, минус) в формуле (9) определяют по направлению изменения разностной частоты при увеличении или уменьшении частоты эталонного (образцового) лазера. Если при увеличении частоты эталонного (образцового) лазера разностная частота увеличивается, то в формуле (9) ставится знак «плюс»; если уменьшается — знак «минус»; если при уменьшении частоты эталонного (образцового) лазера разностная частота уменьшается — ставится знак «плюс», если увеличивается — знак «минус».

G D 5 T

6.3.2.10 Среднее квадратическое отклонение результата измерений разностной частоты $S(\vec{f})$ вычисляют по формуле

$$S(\overline{f}) = \sqrt{\frac{\sum_{j=1}^{n} b_{j}^{2}}{n(n-1)}},$$
(10)

где $b_i = \left| f_i - \overline{f}_i \right|$, и относительное значение среднего квадратического отклонения $S_{\rm ora}$ вычисляют по формуле

$$S_{\text{ens}}(\overline{f}) \frac{S(\overline{f})}{\overline{f}}$$
. (11)

6.3.2.11 Доверительные границы є относительного значения случайной погрешности результата измерений при доверительной вероятности P = 0.95 вычисляют по формуле

$$\varepsilon = t \cdot S_{\text{one}}(\overline{f}). \tag{12}$$

6.3.2.12 Доверительную границу суммарной погрешности ∆ вычисляют по формуле

$$\Delta = K \cdot S_{r}, \tag{13}$$

где K — коэффициент, зависящий от соотношения случайной и неисключенной систематической погрешностей $\left(K = \frac{s + \Theta}{S(f) + \Theta / \sqrt{3}}\right)$;

 S_{z} — суммарное среднее квадратическое отклонение результата измерения $\left(S_{z} = \sqrt{\Theta \frac{3}{3} + S^{2}(\overline{f})}\right)$, где Θ — неисключенная систематическая погрешность поверяемого лазера, равная погрешности воспроизведения длины волны эталонного (образцового) лазера.

6.3.2.13 Результаты измерений представляют в форме

$$\lambda \pm \Delta$$
, P . (14)

Лазеры считают прошедшими поверку, если значение длины волны укладывается в пределы, указанные в технических условиях (или при их отсутствии — в паспорте) на конкретный тип лазера.

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 Положительные результаты поверки оформляют выдачей свидетельства установленной формы. В свидетельстве должны быть приведены значения длины волны излучения и погрешность ее измерения.
- 7.2 При отрицательных результатах поверки дазеры к выпуску и применению не допускают. На них выдают извещение о непригодности с указанием причин. Свидетельство аннулируют.

УДК 531.711.083.74 6:006.354

T 88.1

OKCTY 0008

Ключевые слова: лазеры измерительные, методика поверки

Редактор Р. Г. Говердовская Технический редактор О. Н. Власова Корректор А. В. Прокофьева Оператор А. Г. Хоменко

Сдано в набор 10.01.93. Подписано в печать 01.02.95. Усл. печ. л. 0,93. Усл. кр.-отг. 0,93. Уч.-изд. л. 0,60. Тираж 342 экр. С 2071. Зак. 62.

Ордина «Знак Почета» Излательство стандартов, 107076, Москва, Коловалнай пер., 14. Набрано в Калужской типографии стандартов на ПЭВМ. Калужская типография стандартов, ул. Московскай, 256. ППР № 04013

