# ФЕДЕРАЛЬНОЕ АГЕНТСТВО

## ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ



НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 52530— 2006

# БЕНЗИНЫ АВТОМОБИЛЬНЫЕ

# Фотоколориметрический метод определения железа

Издание официальное





## Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

#### Сведения о стандарте

- РАЗРАБОТАН Открытым Акционерным Обществом «Всероссийский научно-исследовательский институт по переработке нефти» (ОАО «ВНИИНП»)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 31 «Нефтяные топлива и смазочные материалы»
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 9 марта 2006 г. № 27-ст
  - 4 ВВЕДЕН ВПЕРВЫЕ
  - 5 ПЕРЕИЗДАНИЕ. Июль 2007 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

- © Стандартинформ, 2006
- © Стандартинформ, 2007

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

# НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

#### БЕНЗИНЫ АВТОМОБИЛЬНЫЕ

## Фотоколориметрический метод определения железа

Automotive gasolines.

Photocolorimetric method of iron determination

Дата введения — 2007—01—01

# 1 Область применения

1.1 Настоящий стандарт распространяется на автомобильные бензины, содержащие присадки (добавки) ферроценового типа, и устанавливает фотоколориметрический метод определения массовой концентрации железа в диапазоне от 0,01 до 0,10 г/дм<sup>3</sup>.

В зависимости от типа присадок предусмотрены следующие способы проведения испытаний:

- А определение массовой концентрации железа в бензине, содержащем ферроценовую присадку и не содержащем добавок аминного типа (АДА, N-ММА, экстралин и др.);
- Б определение массовой концентрации железа в бензине, содержащем добавку типа Феррада МАФ-К (ферроцены, N-MMA);
- В определение массовой концентрации железа в бензине, содержащем добавку МАФ-А (ферроцены, N-MMA, МТБЭ).

## 2 Нормативные ссылки

В настоящем стандарте использована ссылка на следующий стандарт:

ГОСТ 4517—87 Реактивы. Методы приготовления вспомогательных реактивов и растворов, применяемых при анализе

Примечани и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочного стандарта в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененым) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

# 3 Сущность метода

Сущность метода заключается в экстрагировании из бензина и минерализации железосодержащей присадки смесью серной кислоты и пероксида водорода и последующем фотоколориметрическом определении железа в виде комплекса с сульфосалициловой кислотой.

Издание официальное

1



# 4 Аппаратура, реактивы, материалы

- 4.1 Спектрофотометр типа СФ или фотоколориметр типов КФК-2МП, ФЭК-М или другой с пределами измерения светопропускания от 100 % до 5 % (от 0 до 2 по шкале оптической плотности), с абсолютной погрешностью не более 1 % и ценой деления по шкале пропускания 0,5 %, обеспечивающий измерение оптической плотности в области (420 ± 20) нм.
- 4.2 Весы аналитические с наибольшим пределом взвешивания 200 мг, с пределом допускаемой погрешности не более ± 0,2 мг.
  - 4.3 Электроплитка или песчаная баня.
  - 4.4 Колбы конические КН-1-100-18.
  - 4.5 Колбы мерные вместимостью 50, 100 и 1000 см.<sup>3</sup>.
  - 4.6 Пипетки 1-2-2-1, 1-2-2-5, 1-2-2-10.
  - 4.7 Цилиндры мерные 2-25, 2-50 или 3-25, 3-50.
  - 4.8. Кюветы для фотоколориметра с рабочей длиной стенки 30 мм.
  - 4.9 Воронка типа ВД-1-100 XC.
  - 4.10 Стакан В-1-100 ТС или Н-1-100.
  - Кислота щавелевая, х.ч. или ч.д.а.
  - 4.12 Натрий хлористый, х.ч.
  - 4.13 Спирт этиловый ректификованный технический.
  - 4.14 Вода дистиплированная, рН 5,4 ÷ 6,6.
  - 4.15 Калий двухромовокислый.
  - 4.16 Кислота серная плотностью 1,84 г/ см<sup>3</sup>, х.ч.
- 4.17 Смесь хромовая (раствор калия двухромовокислого с массовой долей 5 % в серной кислоте плотностью 1,84 г/см³), приготовленная по ГОСТ 4517.
- 4.18 Раствор серной кислоты плотностью 1,84 г/см<sup>3</sup> в дистиллированной воде в соотношении 1:4 (по объему).
  - 4.19 Кислота соляная, х.ч.
  - 4.20 Кислота азотная, х.ч.
  - 4.21 Кислота сульфосалициловая, х.ч., 10%-ный раствор.
  - 4.22 Пероксид водорода, х.ч., 30%-ный раствор.
  - 4.23 Аммиак водный, х.ч.
  - 4.24 Железо особой чистоты, или квасцы железоаммонийные, х.ч., или соль Мора, ч.д.а.
  - 4.25 Бумажные фильтры «синяя лента».
  - 4.26 Набор гирь.
  - 4.27 Шкаф сушильный, обеспечивающий нагрев до температуры (105 ± 5) °C.

Допускается применение аналогичных средств измерения, реактивов и аппаратуры по классу точности и чистоте не ниже предусмотренных стандартом.

## 5 Подготовка к испытанию

- 5.1 Стеклянную лабораторную посуду, используемую для испытаний, обрабатывают хромовой смесью, промывают горячей водопроводной водой, дистиплированной водой и сушат в сушильном шкафу.
- 5.2 Спектрофометр типа СФ или фотоэлектроколориметр подготавливают согласно инструкции по эксплуатации и устанавливают длину световой волны в области (420 ± 20) нм, отвечающую максимуму светопоглощения для исследуемых растворов.
- 5.3 Кюветы для фотоколориметра или спектрофотометра с рабочей длиной стенки 30 мм промывают дистиллированной водой, затем этиловым спиртом и сушат на воздухе. Заполняют кюветы дистиллированной водой и измеряют оптическую плотность относительно воздуха.

Две кюветы считают пригодными для работы в паре, если разность измеряемых значений оптической плотности не превышает 0,02. Для последующих измерений кюветы промывают дистиллированной водой, затем этиловым спиртом или ополаскивают изнутри исследуемым раствором.

### 5.4 Приготовление растворов железа

# 5.4.1 Приготовление раствора А

В стакан вместимостью 100 см<sup>3</sup> помещают (0,1 ± 0,0001) г железа (4.24) и 20 см<sup>3</sup> раствора серной кислоты (4.18). При небольшом подогреве на электроплитке растворяют железо в растворе кислоты,

приливают 5 см<sup>3</sup> соляной кислоты, затем 3—5 см<sup>3</sup> азотной кислоты и охлаждают до комнатной температуры:

Стандартный раствор железа количественно переносят в мерную колбу вместимостью 1000 см<sup>3</sup>, доводят объем раствора до метки дистиллированной водой, тщательно перемешивают.

В 1 см<sup>3</sup> полученного раствора А содержится 0,1 мг железа.

#### 5.4.2 Приготовление раствора А из солей железа

0,8640 г железоаммонийных квасцов или 0,7021 г свежеперекристаллизованной соли Мора (в пересчете на 100%-ный реактив) помещают в мерную колбу вместимостью 1000 см<sup>3</sup> и растворяют в дистиллированной воде. Затем раствор подкисляют 5 см<sup>3</sup> концентрированной серной кислоты, доводят объем раствора в колбе до метки дистиллированной водой и тщательно перемешивают. В 1 см<sup>3</sup> полученного раствора А содержится 0,1 мг железа.

#### 5.4.3 Приготовление раствора Б

10 см<sup>3</sup> раствора А, приготовленного по 5.4.1, 5.4.2, помещают в мерную колбу вместимостью 100 см<sup>3</sup>, доводят объем раствора в колбе до метки дистиллированной водой и тщательно перемешивают. В 1 см<sup>3</sup> раствора Б содержится 0.01 мг железа.

Раствор Б готовят непосредственно перед проведением градуировки спектрофотометра или фотоколориметра.

#### 5.5 Построение градуировочного графика

В мерные колбы вместимостью 50 см<sup>3</sup> помещают 0,5; 1,0; 2,0; 3,0; 4,0; 5,0; 6,0; 7,0; 8,0; 9,0; 10,0; 15,0; 20,0 см<sup>3</sup> раствора Б, что соответствует 0,005; 0,01; 0,02; 0,03; 0,04; 0,05; 0,06; 0,08; 0,10; 0,15; 0,20 мг железа.

В каждую колбу приливают по 10 см<sup>3</sup> 10%-ного раствора сульфосалициловой кислоты, затем раствор концентрированного аммиака до получения устойчивой желтой окраски, после чего добавляют небольшой избыток аммиака (1—2 см<sup>3</sup>), доводят дистиллированной водой до метки и тщательно перемешивают. Ждут окончания выделения пузырьков газа.

На фотоколориметре в кюветах с рабочей длиной стенки 30 мм при длине световой волны в области (420 ± 20) нм измеряют оптическую плотность приготовленных градуировочных растворов. В качестве раствора сравнения используют дистиплированную воду.

За значение оптической плотности раствора принимают среднеарифметическое двух последовательных измерений, расхождение между которыми не должно превышать значение, указанное в таблице 1.

Т а б л и ц а 1 — Допускаемые расхождения значений оптической плотности, полученных в условиях двух последовательных измерений

| Интервал значений оптической плотности | Допускаемое расхождение значений оптической плотности |
|----------------------------------------|-------------------------------------------------------|
| 0-0,1                                  | 0,003                                                 |
| 0,1-0,2                                | 0,01                                                  |
| 0,2-0,4                                | 0,02                                                  |
| 0,4-0,6                                | 0,04                                                  |
| 0,6-0,8                                | 0,06                                                  |
| 0,8-1,0                                | 0,08                                                  |

На основании полученных результатов строят градуировочный график, откладывая на оси абсцисс значения массовой концентрации железа в растворах в мг, а на оси ординат — соответствующие им значения оптической плотности.

#### 5.6 Приготовление экстрагирующего раствора (экстрагента)

Экстрагирующий раствор (экстрагент) содержит в 1 дм<sup>3</sup> 3 моля серной кислоты и 1 моль пероксида водорода.

В мерную колбу вместимостью 100 см<sup>3</sup> помещают приблизительно 50 см<sup>3</sup> дистиллированной воды, прибавляют 17 см<sup>3</sup> серной кислоты (плотность 1,84 г /см<sup>3</sup>), охлаждают до комнатной температуры, добавляют 11,5 см<sup>3</sup> 30%-ного пероксида водорода, перемешивают и доводят объем раствора до метки дистиллированной водой.

Экстрагирующий раствор сохраняет свои свойства в течение 1 недели со дня приготовления.



# 6 Проведение испытаний

### 6.1 Способ А

6.1.1 20 см<sup>3</sup> образца исследуемого бензина профильтровывают через бумажный фильтр «синяя лента». В коническую колбу вместимостью 100 см<sup>3</sup> наливают из мерного цилиндра 10 см<sup>3</sup> экстрагента и пипеткой, в соответствии с таблицей 2, вносят профильтрованный образец бензина.

Таблица 2 — Объем пробы бензина, используемый для испытания

| Предполагаемая массовая концентрация железа, <i>г/дм</i> <sup>3</sup> | Объем образца бензина, см <sup>3</sup> |
|-----------------------------------------------------------------------|----------------------------------------|
| До 0,015                                                              | 4,0                                    |
| От 0,015 до 0,025                                                     | 2,0                                    |
| От 0,025 до 0,060                                                     | 1,0                                    |
| Св. 0,060                                                             | 0,5                                    |

- 6.1.2 Осторожно нагревают колбу на электроплитке или песчаной бане, перемешивают жидкость легким встряхиванием, не допуская бурного вскипания и разбрызгивания. Периодически подливают небольшие порции дистиплированной воды (2—3 см³), поддерживая слабое кипение. Добиваются полного удаления бензинового слоя (10—15 мин). При этом железо переходит в нижний слой экстракт.
- 6.1.3 Экстракт охлаждают и переносят количественно из конической в мерную колбу вместимостью 50 см³. Прибавляют 10 см³ 10%-ного раствора сульфосалициловой кислоты и затем, не допуская перегрева, порциями по 2—3 см³, концентрированный раствор аммиака до получения устойчивой желтой окраски, после чего добавляют небольшой избыток аммиака (1—2 см³) и охлаждают раствор до комнатной температуры, давая выход пузырькам газа. Доводят объем раствора до метки дистиллированной водой, перемешивают и выдерживают 10—15 мин.
- 6.1.4 Определяют оптическую плотность полученного раствора на спектрофотометре типа СФ или на фотоколориметре при длине световой волны в области (420 ± 20) нм в кюветах с рабочей длиной стенки 30 мм. В качестве раствора сравнения используют дистиплированную воду.

#### 6.2 Способ Б

25 см<sup>3</sup> исследуемого бензина помещают в делительную воронку и промывают 5—6 раз порциями по 25 см<sup>3</sup> 1%-ной щавелевой кислоты, затем 1 раз дистиллированной водой. Продолжительность каждой промывки 2—3 мин.

В коническую колбу вместимостью 100 см<sup>3</sup> наливают из мерного цилиндра 10 см<sup>3</sup> экстрагента (5.6) и пипеткой, в соответствии с таблицей 2, вносят образец промытого бензина.

Далее испытание проводят по 6.1.2-6.1.4.

#### 6.3 Способ В

25 см<sup>3</sup> исследуемого бензина заливают в делительную воронку и промывают 5 – 6 раз порциями по 25 см<sup>3</sup> насыщенного раствора NaCl, содержащего 1 % (по массе) щавелевой кислоты, затем 1 раз дистиллированной водой. Продолжительность каждой промывки 2—3 мин.

В коническую колбу вместимостью 100 см<sup>3</sup> наливают из мерного цилиндра 10 см<sup>3</sup> экстрагента и пипеткой, в соответствии с таблицей 2, вносят пробу промытого бензина.

Далее испытание проводят по 6.1.2-6.1.4.

# 7 Обработка результатов испытаний

7.1 Рассчитывают массовую концентрацию железа в бензине C, мг/см<sup>3</sup>, по формуле

$$C = \frac{m}{V}$$

где m — масса железа в колориметрируемом растворе, найденная по градуировочному графику, мг;

V — объем пробы бензина, взятый для анализа, см<sup>3</sup>.

Записывают результат, выраженный в мг/дм3.

За результат испытаний принимают среднеарифметическое двух последовательных измерений (двух единичных результатов).

4



# 8 Прецизионность метода

8.1 повторяемость (сходимость): Степень близости друг к другу независимых результатов испытаний, полученных одним и тем же методом на идентичном материале в одной и той же лаборатории, одним и тем же оператором, с использованием одного и того же оборудования в пределах короткого промежутка времени.

Предел повторяемости (сходимости) г.

Абсолютное значение разности двух единичных результатов испытаний, полученных в условиях повторяемости с доверительной вероятностью 95 %, составляет 0,003 г/дм<sup>3</sup>.

8.2 воспроизводимость: Степень близости друг к другу независимых результатов испытаний, полученных одним и тем же методом на идентичном материале в разных лабораториях, разными операторами, с использованием различного оборудования.

Предел воспроизводимости R.

Абсолютное значение разности двух результатов испытаний, полученных в условиях воспроизводимости с доверительной вероятностью 95 %, составляет 0,005 г/дм<sup>3</sup>.



## **FOCT P 52530-2006**

УДК 621.792.543.06:006.354

OKC 19.020 75.160.20 Б19

**OKCTY 0209** 

Ключевые слова: автомобильные бензины, железо, метод определения, фотоколориметр, спектрофотометр, ферроценовые присадки, стандартный раствор, экстрагирующий раствор

Редактор О.В. Гелемеева Технический редактор В.Н. Прусакова Корректор Е.Д. Дульнева Компьютерная верстка: И.А. Напейкиной

Подписано в печать 20:07:2007: Формат 60 × 84  $\frac{1}{8}$  Бумага офсетная.: Гарнитура Ариал: Печать офсетная. Усл. печ. л. 0,93. . Уч. изд. л. 0,65. Тираж 53 экз. Зак., 590,

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.
www.gostinfo.ru info@gostinfo.ru
Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.
Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6:

