ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р 52660— 2006 (ЕН ИСО 20884: 2004)

ТОПЛИВА АВТОМОБИЛЬНЫЕ

Метод определения содержания серы рентгенофлуоресцентной спектрометрией с дисперсией по длине волны

EN ISO 20884:2004

Petroleum products — Determination of sulfur content of automotive fuels —
Wavelength-dispersive X-ray fluorescence spectrometry
(MOD)

Издание официальное

3 11-2006/300

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научно-исследовательский институт по переработке нефти» (ОАО «ВНИИНП») на основе собственного аутентичного перевода стандарта, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 31 «Нефтяные топлива и смазочные материалы»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2006 г. № 427-ст
- 4 Настоящий стандарт является модифицированным по отношению к европейскому стандарту ЕН ИСО 20884:2004 «Нефтепродукты. Определение содержания серы в автомобильных топливах. Рентгенофлуоресцентная спектрометрия с дисперсией по длине волны» (EN ISO 20884:2004 «Petroleum products — Determination of sulfur content of automotive fuels — Wavelength-dispersive X-ray fluorescence spectrometry») путем изменения его структуры.

Сравнение структуры настоящего стандарта со структурой указанного европейского стандарта приведено в дополнительном приложении Б.

При этом дополнительные положения, учитывающие потребности национальной экономики Российской Федерации, приведены в разделах 2 и 6 и выделены курсивом.

Наименование настоящего стандарта изменено относительно наименования указанного европейского стандарта для приведения в соответствие с ГОСТ Р 1.5—2004 (подраздел 3.5)

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2007

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1. Область применения.	, . 1
2. Нормативные ссылки	. 1
3. Сущность метода	. 1
4 Реактивы	. 2
5 Аппаратура	
6. Отбор пробессова	
7 Приготовление калибровочных растворов	. 2
8 Подготовка к испытанию	. 3
9 Калибровка.	
10 Проведение испытания	
11 Обработка результатов	. 5
12 Прецизионность	. 5
Приложение А (обязательное) Факторы, влияющие на результаты измерений и матричные	
эффекты	. 6
Приложение Б (справочное) Сопоставление структуры настоящего стандарта со структурой	
примененного в нем европейского стандарта	7
Библиография	. 7

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТОПЛИВА АВТОМОБИЛЬНЫЕ

Метод определения содержания серы рентгенофлуоресцентной спектрометрией с дисперсией по длине волны

Automotive fuels.

Method for determination of sulfur content by wavelength-dispersive X-ray fluorescence spectrometry

Дата введения — 2008—01—01

1 Область применения

Настоящий стандарт распространяется на жидкие гомогенные автомобильные бензины, массовая концентрация кислорода в которых не более 2,7 %, и дизельные топлива, содержащие не более 5 % (об.) метилового эфира жирной кислоты (МЭЖК), и устанавливает метод определения содержания серы в диапазоне от 5 до 500 мг/кг рентгенофлуоресцентной спектрометрией с дисперсией по длине волны.

Соединения с более высокой массовой концентрацией кислорода, например такие, как МЭЖК, используемый как добавка биологического происхождения к дизельному топливу, обнаруживают значительные матричные эффекты. Однако МЭЖК может быть проанализирован данным методом при соблюдении условий, изложенных в 4.3 и 7.1.

Факторы, влияющие на результаты измерений и матричные эффекты, изложены в приложении А. Настоящий метод применим к другим продуктам, однако прецизионность для них не установлена. Настоящий стандарт не устанавливает требования безопасности, связанные с применением метода. Пользователь настоящего стандарта должен разработать соответствующие правила техники безопасности.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 8.580—2001 Государственная система обеспечения единства измерений. Определение и применение показателей точности методов испытаний нефтепродуктов (ИСО 4259:1992 «Нефтепродукты. Определение и применение показателей прецизионности методов испытания», МОД)

ГОСТ 2517—85 Нефть и нефтепродукты. Методы отбора проб

3 Сущность метода

Испытуемый образец, помещенный в кювету, облучают потоком первичного излучения рентгеновской трубки. Измеряют скорость счета импульсов от S-Кα-рентгенофлуоресцентного излучения и скорость счета импульсов фоновой радиации. Содержание серы определяют по калибровочной кривой, построенной для измеряемого диапазона серы.

П р и м е ч а н и е — В настоящем стандарте используют обозначение рентгеновской спектральной линии по Сигбану — S-K_α, соответствующее обозначение для рентгеновской спектральной линии в системе IUPAC — SK-L_{2.3}.

Издание официальное

1

4 Реактивы

4.1 Дибутилсульфид с содержанием серы 21,92 % (масс.) или дибутилдисульфид с содержанием серы 35,95 % (масс.), используемые в качестве калибровочного вещества для определения серы.

П р и м е ч а н и е — Вещества, указанные в 4.1, — летучие, поэтому при обращении с ними необходимо соблюдать определенные меры предосторожности (приложение A, A.5).

4.2 Масло белое (на основе парафина) высокой степени чистоты с содержанием серы менее 1 мг/кг.

Используют в качестве холостого раствора, который перед применением проверяют спектрометром (5.1) на содержание в нем серы. Характерный для серы сигнал не должен обнаруживаться.

4.3 Метилолеат с содержанием серы менее 1 мг/кг.

Используют в качестве холостого раствора при анализе МЭЖК, который перед применением проверяют спектрометром (5.1) на содержание в нем серы. Характерный для серы сигнал не должен обнаруживаться

В качестве холостых растворов можно использовать другие кислородсодержащие соединения, свободные от серы, например октанол.

5 Аппаратура

5.1 Спектрометр рентгенофлуоресцентный с дисперсией по длине волны, способный измерять скорости счета S-Kα-рентгенофлуоресцентного излучения и фонового излучения. В таблице 1 представлен минимальный объем требований к прибору.

Таблица 1 — Характеристика спектрометра

Компонент спектрометра	Требования	Рекомендации
Анод	Родий, скандий или хром	·— ·
Напряжение*	Не менее 30 кV	30 kV
Tok*	Не менее 50 мА	100 MA
Коллиматор	Крупнозернистый	
Анализирующий кристалл	Германий, пентаэритрит или графит	Германий
Оптический контур	Гелий	_
Окошечко кюветы для образца**	Полизфирная пленка, не содержащая серы, толщиной 4 мкм	Полиэфирная пленка. 3,5 мкм
Детектор	Пропорциональный счетчик с высокоамплитудным анализатором	-

Могут быть использованы системы малой мощности с подтверждением соответствия требованиям по прецизионности, указанным в разделе 12.

5.2 Весы аналитические с точностью взвешивания не менее 0,1 мг.

6 Отбор проб

Если отсутствуют другие указания, пробы отбирают в соответствии с процедурами, представленными в [1] или [2].

Отбор проб можно проводить в соответствии с ГОСТ 2517.

7 Приготовление калибровочных растворов

7.1 Холостой раствор

В качестве холостого раствора используют белое масло (4.2).

При анализе МЭЖК, чтобы свести к минимуму возможные матричные эффекты (приложение A, A.5), в качестве холостого используют раствор по 4.3.

G D S T

Могут быть также использованы другие материалы для окошечек кюветы для образца с такими же или лучше прозрачностью для рентгеновских лучей, чистотой и стабильностью.

7.2 Исходный раствор

Раствор с известным содержанием серы, равным (1000 ± 1) мг/кг.

Для его приготовления рассчитывают и при комнатной температуре взвешивают с точностью 0,1 мг требуемое количество калибровочного вещества (4.1) и добавляют холостой раствор по 4.2 или 4.3 в таком количестве, чтобы получить раствор с указанным выше содержанием серы. Соблюдают меры предосторожности из-за летучести полученного раствора (приложение A, A.5).

7.3 Калибровочные растворы

Взвешивают исходный раствор (7.2) сточностью 0,1 мг в колбе необходимой вместимости и добавляют холостой раствор (4.2 или 4.3) в количестве, необходимом для получения стандартных растворов с концентрацией серы, указанной в таблицах 2 и 3. Перемешивают полученные растворы при комнатной температуре.

Концентрацию серы в калибровочных растворах записывают в миллиграммах на килограмм, округляя значения с точностью до 0,1 мг/кг.

Т а б л и ц а 2 — Концентрация серы в калибровочных растворах (низкий диапазон)

Номер калибровочного раствора	Концентрация серы, мг/кг
0 (холостой олыт)	0,0
2,1	5,0
2,2	10,0
2,3	25,0
2,4	50,0

Т а б л и ц а 3 — Концентрация серы в калибровочных растворах (высокий диапазон)

Номер калибровочного раствора	Концентрация серы, мг/кг
0 (холостой опыт)	0,0
.3,1	50,0
3,2	100,0
3,3	200,0
3,4	350,0
3,5	500,0

П р и м е ч а н и е — В то время, как исходные растворы могут быть стабильными продолжительное время, калибровочные растворы не стабильны.

7.4 Хранение и стабильность калибровочных растворов

Калибровочные растворы, приготовленные в соответствии с таблицей 2, имеют ограниченную стабильность, их используют в тот же день.

Калибровочные растворы, приготовленные в соответствии с таблицей 3, стабильны не более одной недели при их хранении в прохладном месте, например в холодильнике.

8 Подготовка к испытанию

- 8.1 Оптимальные параметры измерения представлены в таблице 1.
- 8.2 Спектрометр должен быть подготовлен в соответствии со спецификациями изготовителя таким образом, чтобы достигалось оптимальное соотношение «сигнал фон». Для оптимизации рекомендуют использовать калибровочный раствор с содержанием серы 50 мг/кг.

Время счета импульсов должно быть отрегулировано таким образом, чтобы для калибровочного раствора с содержанием серы 50 мг/кг при оптимальном соотношении «сигнал — фон» и оптимальной площади сигнала получалось, например, 40000 импульсов. Это оптимальное время счета должно быть использовано и при калибровке (раздел 9), и при измерениях (раздел 10).

8.3 Проверяют правильность работы спектрометра перед проведением серии измерений (калибровка и/или измерение), но в любом случае не реже одного раза в день, используя спецификации изготовителя прибора, чтобы гарантировать проведение подготовки к работе на высшем уровне.

Проверки прибора следует проводить регулярно, так как они позволяют получить важную информацию о состоянии и стабильности работы спектрометра.

9 Калибровка

 9.1 Перед калибровкой проводят мероприятия, гарантирующие, что спектрометр находится в оптимальных условиях после проведения проверки по 8.3 и работает стабильно.

Для диапазонов содержания серы от 5 до 60 мг/кг и от 60 до 500 мг/кг калибровки должны быть проведены отдельно.

 Калибровочные растворы (7.3) наливают в соответствующие кюветы до определенного уровня (см. примечание настоящего подраздела).

В зависимости от диапазона концентраций все калибровочные растворы, приготовленные в соответствии с таблицами 2 и 3, должны быть измерены последовательно по возрастанию концентрации серы. Последовательно измеряют скорость счета импульсов $I_{\rm S}$ для рентгенофлуоресцентного излучения S-K α на длине волны 0,5373 нм и скорости счетов импульсов $I_{\rm B}$ для фонового излучения на длине волны 0,545 нм.

П р и м е ч а н и е — Слишком малое количество испытуемого образца при анализе летучих образцов может дать сомнительные результаты или соответственно оказать большое влияние за счет испарения образца, в то время, как слишком большое количество образца будет вызывать большое выгибание окошечка кюветы, особенно при измерении образцов на основе легкой ароматики.

9.3 Чистую скорость счета импульсов R_0 рассчитывают по формуле (1). Используя калибровочные растворы таблиц 2 и 3, строят две калибровочные кривые зависимости чистой скорости счета импульсов R_0 от концентрации серы в калибровочном растворе. При построении обеих калибровочных кривых используют формулу (2):

$$R_0 = I_S - I_B; \qquad (1)$$

$$R_0(x) = a + bx + cx^2,$$
 (2)

 $rge R_o$ — чистая скорость счета импульсов S-K α рентгенофлуоресцентного излучения при длине волны 0,5373 нм;

 $I_{\rm S}$ — скорость счета импульсов S-K α рентгенофлуоресцентного излучения при длине волны 0.5373 им

 $I_{\rm B}$ — скорость счета импульсов фонового излучения при длине волны 0,545 нм;

 $R_0(x)$ — чистая скорость счета импульсов, полученная из регрессии для концентрации серы, равной (x) в калибровочном растворе;

содержание серы в испытуемом калибровочном растворе, мг/кг;

а, b, с — параметры регрессии:

Расчеты, связанные с регрессией, выполняют отдельно или с помощью калькулятора в спектрометре.

9.4 Проверка калибровочных кривых

Регулярно, не реже одного раза в шесть месяцев, проверяют не менее двух точек на каждой калибровочной кривой. Для таких проверок используют образцы для контроля качества результатов испытания с известным содержанием серы. При использовании новой партии пленки для окошечка кюветы проверку проводят в обязательном порядке. Если результаты проверки отличаются от данных калибровочной кривой на значение, превышающее значение повторяемости настоящего стандарта, снова проводят калибровку. При возникновении сомнений относительно состояния прибора необходимо провести повторную калибровку.

10 Проведение испытания

10.1 Испытания образцов с содержанием серы в диапазоне от 5 до 60 мг/кг

Помещают достаточное количество испытуемого образца в кювету в соответствии с 9.1. Облучают образец рентгеновским излучением. Последовательно измеряют скорость счета импульсов I_s S-K α рентгенофлуоресцентного излучения при длине волны 0,5373 нм и скорость счета импульсов I_s фоново-

Ä

го излучения при длине волны 0,545 нм. Рассчитывают чистую скорость счета импульсов R_0 в соответствии с формулой (1). По калибровочной кривой (9.3) определяют содержание серы (мг/кг) для измеряемого диапазона.

Если содержание серы выше, чем 60 мг/кг, тогда измеряют новый образец в новой кювете и используют калибровочную кривую для измеряемого диапазона от 60 до 500 мг/кг.

10.2 Испытания образцов с содержанием серы в диапазоне от 60 до 500 мг/кг

Помещают достаточное количество испытуемого образца в кювету в соответствии с 9.1. Облучают образец рентгеновским излучением. Последовательно измеряют скорость счета импульсов $I_{\rm S}$ S-K α рентгенофлуоресцентного излучения при длине волны 0.5373 нм и скорость счета импульсов $I_{\rm B}$ фонового излучения при длине волны 0.545 нм. Рассчитывают чистую скорость счета импульсов R_0 в соответствии с формулой (1).

По калибровочной кривой (9.3) определяют содержание серы (мг/кг) для измеряемого диапазона. Если содержание серы выше 500 мг/кг, образец анализируют другим подходящим методом [3].

11 Обработка результатов

- 11.1 Записывают массовую концентрацию серы в образце с точностью до 0,1 мг/кг для диапазона содержания серы от 5 до 99 мг/кг и с точностью 1 мг/кг для диапазона содержания серы от 100 до 500 мг/кг.
 - 11.2 Отчет по испытанию должен содержать следующую информацию:
 - ссылку на настоящий стандарт;
 - тип испытуемого продукта и его полную идентификацию;
 - результат испытания (11.1);
 - любое отклонение от установленной процедуры;
 - дату испытания.

12 Прецизионность

12.1 Общие положения

Прецизионность определяют статистическим исследованием в соответствии с FOCT P 8.580.

12.2 Повторяемость г

Расхождение между двумя результатами испытаний, полученными одним и тем же оператором на одной и той же аппаратуре в постоянном рабочем режиме на идентичном испытуемом материале в течение длительного времени при нормальном и правильном выполнении метода испытания, может превышать значения, приведенные в таблице 4, только в одном случае из двадцати.

Таблица 4 — Показатели прецизионности

Массовая концентрация серы, мг/кг	Повторяемость г, мг/кг	Воспроизводимость R, мг/кг
От 5 до 60	1.7 + 0.024 8X *	1,9 + 0,1201X
Cs. 60 × 500	4.0	4,6 + 0,075X

12.3 Воспроизводимость R

Расхождение между двумя единичными и независимыми результатами испытаний, полученными разными операторами, работающими в разных лабораториях на идентичном испытуемом материале в течение длительного времени при нормальном и правильном выполнении метода испытания, может превышать значения, приведенные в таблице 4, только в одном случае из двадцати.

П р и м е ч а н и е — Указанные показатели прецизионности применимы только для продуктов с массовой концентрацией кислорода не более 2,7 % (масс.):

Приложение А (обязательное)

Факторы, влияющие на результаты измерений и матричные эффекты

- А.1 Если образцы содержат воду или механические примеси, результаты могут быть неправильными. Поэтому, образцы, которые не прозрачны, должны быть профильтрованы через бумажный фильтр, чтобы удалить воду и механические примеси.
- А.2 Жир, оставленный пальцами при соприкосновении с внутренней стенкой кюветы для образца, или образец на пленке окошечка кюветы, могут оказывать влияние на результат при анализе низкого содержания серы. Этих факторов следует избегать.
 - А.3 Кюветы для образца должны готовиться на чистой поверхности; можно использовать бумагу для печати.
- А.4 Окошечки кювет для образцов должны быть проверены на герметичность; следует избегать складок на пленке.
- А.5 Кюветы, содержащие летучие образцы, должны быть накрыты, чтобы свести к минимуму испарение и изменение концентрации.
- А.6 Измерение (большого числа) летучих образцов может повлиять на чувствительность прибора отрицательным образом.
- А.7 Использованные кюветы для образцов не следует применять повторно в том случае, когда предполагают получить большие значения. Те же результаты могут быть получены при длительном времени измерения.

Приложение Б (справочное)

Сопоставление структуры настоящего стандарта со структурой примененного в нем европейского стандарта

Таблица Б.1

Структура европейского стандарта ЕН ИСО 20884:2004	Структура настоящего стандарта
1 Область применения	1 Область применения (1)
2 Нормативные соылки	2 Нормативные ссылки (2)
3 Сущность метода	3 Сущность метода (3)
4 Реактивы	4 Реактивы (4)
5 Аппаратура	5. Аппаратура (5)
6 Οτδορ πραδ	6 Отбор проб (6)
7 Калибровочные растворы	7 Приготовление калибровочных растворов (7)
8. Установочные положения	8 Подготовка к испытанию (8)
9 Калибровка	9 Калибровка (9)
10 Проведение испытания	10 Проведение испытания (10)
11 :Запись результатов	11 Обработка результатов (11 и 13)
12 Прецизионность	12 Прецизионность (12)
13 Отчет по испытанию	•
Приложение А Помехи и матричные эффекты	Приложение А Факторы, влияющие на результать измерений и матричные эффекты (приложение А)
-	Приложение В Сопоставление структуры настоящего стандарта со структурой примененного в нем европейского стандарта
Библиография	Библиография

Данный раздел исключен, т. к. его положения размещены в других разделах настоящего стандарта...

П р и м е ч а н и е — После заголовков разделов настоящего стандарта приведены в скобках номера аналогичных им разделов европейского стандарта.

Библиография

[1] ИСО 3170:2004* Нефтяные жидкости. Ручной отбор проб

[2] ИСО 3171:1988* Нефтяные жидкости. Автоматический отбор проб

[3] ИСО 14596:1998* Нефтепродукты. Определение содержания серы. Рентгенофлуоресцентная спектрометрия с дисперсией по длине волны

Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать леревод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

FOCT P 52660-2006

УДК 631.829.543.06:006.354

OKC 75.160.20

Б19

ОКСТУ 0209

Ключевые слова: автомобильные топлива, топливо для двигателей, концентрация серы, рентгенофлуоресцентная спектрометрия, дисперсия волны

> Редактор Л.И. Нахимова. Технический редактор Н.С. Гришанова Корректор М.В. Бучная Компьютерная верстка И.А. Налейкиной

Сдано в набор 13.04.2007. Подписано в печать 14:05.2007. Формат 60 x 84 况 Бумага офсетная. Гарнитура Ариал. Печать офсетная. Усл. печ. п. 1,40. Уч.-изд. п. 0,85. Тираж 254 экз. Зак, 412. С 4023.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.
www.gostinfo.ru info@gostinfo.ru
Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.
Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.

