ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р ИСО 3675— 2007

НЕФТЬ СЫРАЯ И НЕФТЕПРОДУКТЫ ЖИДКИЕ

Лабораторный метод определения плотности с использованием ареометра

ISO 3675:1998

Crude petroleum and liquid petroleum products — Laboratory determination of density — Hydrometer method (IDT)

Издание официальное

53 8-2007/234

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научно-исследовательский институт по переработке нефти» (ОАО «ВНИИ НП») на основе аутентичного перевода стандарта, указанного в пункте 4, который выполнен ФГУП «СТАНДАРТИНФОРМ»
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 31 «Нефтяные топлива и смазочные материалы»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 4 сентября 2007 г. № 225-ст
- 4 Настоящий стандарт идентичен международному стандарту ИСО 3675:1998 «Сырая нефть и жидкие нефтепродукты. Лабораторное определение плотности. Метод с использованием ареометра» (ISO 3675:1998 «Crude petroleum and liquid petroleum products Laboratory determination of density Hydrometer method»).

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5—2004 (подраздел 3.5).

При применений настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении В

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2007

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1. Область применения.	.1
2. Нормативные ссылки	1
3. Термины и определения	2
4 Сущность метода.	2
5 Аппаратура	
6. Отбор проб	3
7 Подготовка проб в гладарата поддржавать пробременто под подржавать поддржавать под	3
7.1 Перемешивание проб	3
7.2 Температура испытания	4
8 Проверка аппаратуры	4
9 Подготовка аппаратуры	4
10 Проведение испытания	4
11 Расчет	6
12 Запись результатов.	
13 Прецизионность:	6
13.1 Повторяемость (сходимость)	6
13.2 Воспроизводимость	7
14 Отчет по испытанию	
Приложение А (обязательное) Введение поправок в показания ареометров из натриево-кальциево-	
силикатного стекла, отградуированных при температурах, не равных 15 °C	8
Приложение В (справочное) Сведения о соответствии национальных стандартов Российской	
Федерации ссылочным международным стандартам	
Библиография. По поточения меня него и положения и подключения и под председения и под	0

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

НЕФТЬ СЫРАЯ И НЕФТЕПРОДУКТЫ ЖИДКИЕ

Лабораторный метод определения плотности с использованием ареометра

Crude petroleum and liquid petroleum products. Laboratory hydrometer method for determination of density

Дата введения — 2008—07—01

1 Область применения

- 1.1 Настоящий стандарт устанавливает лабораторный метод определения плотности сырой нефти, жидких нефтепродуктов и смесей нефтяных и ненефтяных продуктов при температуре 15 °C, в обычных условиях являющихся жидкостями, давление паров которых по Рейду составляет 100 кПа или менее, с использованием стеклянного ареометра.
- 1.2 Настоящий стандарт можно использовать для определения плотности подвижных прозрачных жидкостей. Он также распространяется на вязкие жидкости, плотность которых определяют при температурах, превышающих температуру окружающей среды, с использованием соответствующей жидкостной бани в качестве термостата.
- 1.3 Настоящий стандарт также можно использовать для определения плотности непрозрачных жидкостей путем считывания показаний шкалы ареометра при совпадении верхнего края мениска со стержнем ареометра и введением поправки из таблицы 1 (11.2).
- 1.4 Поскольку для точного считывания ареометры градуируют при заданной температуре, показания шкалы ареометра, полученные при других значениях температуры, являются только показаниями данного прибора, а не значениями плотности при этих температурах.

П р и м е ч а н и е 1 — Точность измерения плотности летучих и/или парафинистых сырых масел, содержащих свободную и/или взвешенную воду и осадок, определяемая методами, представленными в настоящем стандарте, может оказаться меньше точности, получаемой на основе данных по точности, приведенных в разделе 13. Это связано с возможной потерей легких фракций во время перемешивания проб. Тем не менее, перемешивание проб необходимо для того, чтобы испытуемая порция, поступающая в цилиндр ареометра, была по возможности представительной пробой основного количества образца. В разделе 7 представлены способы, позволяющие свести к минимуму такие потери легких фракций.

П р и м е ч а н и е 2 — Значения плотности при температуре 15°C могут быть переведены с использованием таблиц стандартных измерений в эквивалентные значения плотности или относительной плотности в градусах Американского нефтяного института, так что измерения могут проводиться в системе единиц, удобной для применения в конкретном месте.

Настоящий стандарт не ставит своей целью решить все вопросы безопасности, связанные с его использованием. Пользователь стандарта несет ответственность за установление соответствующих мер безопасности и охраны здоровья и определяет возможность использования упомянутых ограничений перед применением стандарта.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие международные стандарты:

ИСО 91-1:1992 Таблицы измерений параметров нефти. Часть 1. Таблицы, основанные на стандартных температурах 15 °C и 60 °F

Издание официальное

ГОСТ Р ИСО 3675-2007

ИСО 649-1:1981 Лабораторная стеклянная посуда. Ареометры для определения плотности общего назначения. Часть 1. Спецификация

ИСО 3170:1988 Нефтяные жидкости. Руководство по ручному отбору проб

ИСО 3171:1988 Нефтяные жидкости. Автоматический отбор проб из трубопровода

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- 3.1 плотность (density): Отношение массы вещества к занимаемому им объему, выражаемое в килограммах на кубический метр либо в граммах на кубический сантиметр, при температуре 15 °C и давлении 101,325 кПа.
- 3.2 температура помутнения (cloud point): Температура, при которой происходит помутнение жидкости вследствие появления кристаллов парафина при ее охлаждении в заданных условиях.
- 3.3 температура начала кристаллизации (wax appearance temperature; WAT): Температура, при которой образуется твердая фаза парафина при охлаждении в заданных условиях нефти или нефтепродуктов.
- 3.4 температура потери текучести (pour point): Наименьшая температура, при которой проба нефти или нефтепродукта продолжает оставаться подвижной при ее охлаждении в заданных условиях.

4 Сущность метода

Температуру образца доводят до заданной температуры, затем образец помещают в цилиндр для ареометра, температура которого приблизительно такая же. Соответствующий ареометр, температура которого также приблизительно равна температуре образца, погружают в испытуемый образец так, чтобы ареометр свободно плавал. После достижения температурного равновесия считывают показания ареометра, записывают температуру испытуемого образца, а снятое показание переводят в соответствующее значение для температуры 15 °C, используя таблицы стандартных измерений. В случае необходимости, для исключения чрезмерных колебаний температуры во время проведения испытаний цилиндр для ареометра и его содержимое помещают в термостат.

5 Аппаратура

5.1 Цилиндр для ареометра из прозрачного стекла, пластика или металла, внутренний диаметр которого не менее чем на 25 мм больше наружного диаметра ареометра (5.2); высота цилиндра должна быть такой, чтобы ареометр плавал в испытуемой порции образца, причем зазор между дном ареометра и дном цилиндра составлял не менее 25 мм. Пластиковый материал, используемый в конструкции цилиндров для ареометра, должен быть стойким к обесцвечиванию или к воздействию испытуемых проб и не должен оказывать влияния на их свойства. Кроме того, цилиндры не должны становиться непрозрачными при продолжительном воздействии на них света.

П р и м е ч а н и е — Для удобства слива нефтепродукта цилиндр может иметь носик на горлышке.

5.2 Ареометры стеклянные, градуированные в единицах плотности, соответствующие ИСО 649-1 и требованиям, приведенным в таблице 1 (см. также приложение A).

Таблица 1 — Требования к ареометрам

Единицы измерения	Диапазон плотности	Каждая единица	Цёна дёлёния шкалы	. Максимальная погрешность шкалы	Поправка на мениск
кг/м³, при температуре 15°C	600—1100 600—1100 600—1100	20 50 50	0,2 0,5 1,0	± 0,2 ± 0,3 ± 0,6	+0,3 +0,7 +1,4
г/см³, при температуре 15 °C	0,600—1,100 0,600—1,100 0,600—1,100	0,02 0,05 0,05	0,0002 0,0005 0,0010	± 0,0002 ± 0,0003 ± 0,0006	+0,0003 +0,0007 +0,0014

- 5.3 Термостат, используемый в случае необходимости, размеры которого позволяют полностью поместить в него цилиндр для ареометра с испытуемой порцией образца так, чтобы уровень нефтепродукта в цилиндре находился ниже уровня поверхности жидкости в бане. Система регулирования температуры должна обеспечивать поддержание температуры с точностью ± 0,25 °C в течение всего периода проведения испытания.
- 5.4 Термометр, диапазон измерений, деления шкалы и максимальная допустимая погрешность шкалы которого приведены в таблице 2.

Таблица 2 — Требования к термометрам

Диапазон измерения, "С	Деление шкалы	Максимальная погрешность шкалы
От -1 до +38	0,1	± 0,10
От -20 до +102	0,2	±.0,15°

П р и м е ч а н и е 1 — Рекомендуется использовать термометры IP 39C и IP 64C/ASTM 12C.

П р и м е ч а н и е 2 — При условии, что полная погрешность отградуированной системы не превышает погрешность измерений стеклянных жидкостных термометров, можно использовать термометры сопротивления.

Стеклянная или пластиковая мешалка, длина которой составляет приблизительно 450 мм.

6 Отбор проб

Пробы должны отбирать в соответствии с ИСО 3170 и ИСО 3171 или в соответствии с национальным стандартом.

П р и м е ч а н и е — Если при отборе проб летучих жидкостей автоматизированным методом для сбора проб и их транспортирования в лабораторию не используют пробоотборник с регулируемым объемом, возможны потери легких фракций, что влияет на точность измерений плотности.

7 Подготовка проб

7.1 Перемешивание проб

Образец испытуемой пробы по возможности должен быть представительным, при этом может потребоваться ее перемешивание. При перемешивании для сохранения целостности пробы необходимо соблюдать осторожность.

Перемешивание летучих сырых нефтей и нефтепродуктов, содержащих осадки и/или воду, а также нагревание парафинистых летучих сырых нефтей или нефтепродуктов может привести к потере легких фракций. Инструкции о том, как обрабатывать различные продукты и сводить к минимуму потери легких фракций, приведены в 7.1.1—7.1.4.

7.1.1 Летучие сырые нефти и нефтепродукты, давление паров которых по Рейду выше 50 кПа

Для сведения к минимуму потерь легких фракций по возможности перемешивают пробу в контейнере для хранения проб и в закрытой системе.

П р и м е ч а н и е — Перемешивание летучих проб в открытых контейнерах приведет к потере легких фракций и повлияет на значение измеряемой плотности.

7.1.2 Парафинистые сырые нефти

Если температура, при которой сырая нефть теряет текучесть, выше 10 °C или если температура ее помутнения или температура начала кристаллизации (3.3) выше 15 °C, перед перемешиванием нагревают пробу до температуры на 9 °C выше температуры, при которой она теряет текучесть, или до температуры на 3 °C выше температуры ее помутнения или температуры начала кристаллизации. Для сведения к минимуму потерь легких фракций по возможности перемешивают пробу в исходном контейнере или в закрытой системе.

7.1.3 Дистилляты, содержащие парафины

Перед перемешиванием нагревают пробу до температуры на 3 °C выше температуры ее помутнения или температуры начала кристаллизации.

7.1.4 Остаточное нефтяное топливо

Перед перемешиванием нагревают пробу до температуры, при которой проводят испытания (7.2.1 и примечание 2 в 7.2.1).

7.2 Температура испытания

7.2.1 Доводят пробу до температуры, при которой она остается жидкой, но не настолько высокой, чтобы испарялись легкие фракции, и не настолько низкой, чтобы происходило выпадение кристаллов парафина.

П р и м е ч а н и е 1 — Плотность, измеренная ареометром при стандартной температуре, равной или почти равной 15 °C, является наиболее точной.

П р и м е ч а н и е 2 — Показание ареометра считывают при температуре, соответствующей физико-химическим характеристикам испытуемых продуктов. Эту температуру, как правило, выбирают близкой к стандартной температуре 15 °C. Если плотность используют при основных измерениях нефти (масла), испытания рекомендуется проводить при температуре основного количества нефти с точностью ± 3 °C, что сводит к минимуму ошибки за счет корректировки объема.

7.2.2 В случае сырой нефти доводят температуру пробы до температуры 15 °C или до температуры на 9 °C выше температуры, при которой нефть теряет текучесть, или до температуры на 3 °C выше температуры помутнения пробы или температуры появления парафина в зависимости от того, какая из этих температур выше.

П р и м е ч а н и е — В случае сырой нефти измерение температуры появления парафина можно проводить термометром IP 389 [4], приспособленным для испытаний проб объемом (50 ± 0,5) мкл. Прецизионность измерения температуры появления парафина в сырых нефтях при использовании термометра IP 389 не определялась.

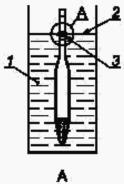
8 Проверка аппаратуры:

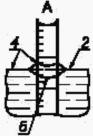
- 8.1 Ареометры необходимо регулярно проверять путем сравнения их со стандартным ареометром, соответствующим национальному стандарту, или с сертифицированным стандартным материалом по плотности. Ареометры необходимо повторно градуировать не менее одного раза в 5 лет.
- 8.2 Термометры необходимо регулярно проверять путем сравнения их со стандартным термометром, пригодным для контроля в соответствии с национальным стандартом.

9 Подготовка аппаратуры

- Убеждаются по реперной отметке, что шкала ареометра правильно установлена на его стержне. Если шкала смещена, ареометр отбраковывают.
- 9.2 Доводят температуру цилиндра для ареометра и самого ареометра до температуры, приблизительно равной температуре пробы (7.2.1 и примечание 2 в 7.2.1).

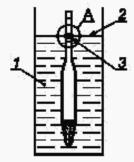
10 Проведение испытания


- 10.1 Помещают образец, температура которого соответствует температуре проведения испытания (7.2.1 и примечание 2 в 7.2.1), в чистый цилиндр для ареометра (5.1) с установившейся температурой, избегая разбрызгивания нефтепродукта и попадания пузырьков воздуха, а также сводя к минимуму испарение компонентов летучих продуктов, имеющих более низкую температуру кипения.
- 10.2 Удаляют пузырьки, собравшиеся на поверхности образца, прикасаясь к ним чистой фильтровальной бумагой.
- 10.3 Помещают цилиндр с образцом в вертикальном положении в месте, где нет циркуляции воздуха и в котором температура окружающей среды в процессе проведения испытания не изменяется более чем на 2 °С. Если испытание проводят при температурах, отличающихся от температуры окружающей среды более чем на 2 °С, необходимо использовать термостат (5.3) для исключения чрезмерных изменений температуры (10.13).
- 10.4 Для обеспечения постоянства температуры и плотности по всему объему цилиндра перемешивают испытуемый образец выбранным термометром (таблица 2) или при использовании термометра сопротивления мешалкой (5.5), комбинируя вертикальное перемешивание с вращением. Записывают значение температуры, округляя его до 0,1 °C. Вынимают из цилиндра термометр и мешалку, в случае ее использования.
- 10.5 Погружают ареометр (5.2) в жидкость и освобождают его, чтобы он пришел в равновесие.
 Избегают смачивания стержня ареометра на участке выше уровня, на котором он свободно плавает.



Наблюдают за формой мениска, когда ареометр в результате надавливания опускается на 1 или 2 мм ниже уровня равновесия, а затем возвращается в исходное равновесное положение. Если форма мениска изменяется, чистят стержень ареометра. Повторяют эти действия до тех пор, пока форма мениска не будет оставаться постоянной.

- 10.6 При испытаниях непрозрачных вязких жидкостей обеспечивают медленное погружение ареометра в жидкость.
- 10.7 При испытаниях прозрачных маловязких жидкостей надавливают на ареометр так, чтобы он погрузился в жидкость приблизительно на два деления, а затем отпускают его. Верхняя часть стержня ареометра, находящаяся выше уровня жидкости, должна быть сухой, поскольку наличие на ней жидкости влияет на считываемые показания.
- 10.8 Ареометр приводят в медленное вращение так, чтобы он свободно плавал вдали от стенок цилиндра. Следует подождать, пока ареометр примет состояние покоя, а все образовавшиеся пузырьки воздуха выйдут на поверхность (10.2). Удаляют пузырьки с поверхности перед считыванием показаний.
- 10.9 При использовании цилиндра, изготовленного из пластика, снимают статическое электричество путем протирания наружной поверхности цилиндра влажной тряпкой.
- П р и м е ч а н и е Часто при использовании таких цилиндров появляются статические заряды, которые могут помещать свободному плаванию ареометра.
- 10.10 Когда ареометр останавливается, свободно плавая вдали от стенок цилиндра, считывают его показание на шкале, округляя последнее до ближайшей 1/5 деления шкалы, в соответствии с 10.11 или 10.12.
- 10.11 При испытаниях прозрачных жидкостей записывают показание ареометра в том месте его шкалы, где основная поверхность жидкости пересекает шкалу, располагая уровень глаз несколько ниже уровня жидкости и медленно поднимая его, пока поверхность, сначала видимая как деформированный эллипс, не станет прямой линией, пересекающей шкалу ареометра (рисунок 1).
- 10.12 При испытаниях непрозрачных жидкостей снимают показания в том месте шкалы ареометра, до которого поднимается поверхность испытуемого образца, при этом уровень глаз должен находиться несколько выше плоскости поверхности жидкости (рисунок 2).


П р и м е ч а н и е — При испытаниях полностью непрозрачных образцов с использованием металлических цилиндров для ареометра точное считывание ареометра может быть гарантировано только тогда, когда уровень образца располагается в пределах 5 мм от верхней части цилиндра.

Т — жидкость; 2 — горизонтальная плоская поверхность жидкости; 3 — нижняя часть мениска; 4 — место считывания шкалы; 5 — мениск

Рисунок 1 — Считывание показаний шкалы ареометра при испытаниях прозрачных жидкостей

Т — жидкость; 2 — горизонтальная плоская поверхность жидкости; 3 — нижняя часть мениска; 4 — место считывания шкалы; 5 — мениск

Рисунок 2 — Считывание показаний шкалы ареометра при испытаниях непрозрачных жидкостей

ГОСТ Р ИСО 3675-2007

- 10.13 Сразу же после считывания показаний шкалы ареометра осторожно вынимают его из жидкости и перемешивают образец в вертикальном направлении термометром. Записывают значение температуры испытуемого образца, округляя его до 0,1 °C. Если эта температура отличается от температуры, считанной в начале испытаний, более чем на 0,5 °C, повторяют измерения ареометром, а затем термометром до тех пор, пока температура не станет стабильной в пределах ± 0,5 °C. Если температура не становится стабильной, помещают цилиндр для ареометра и его содержимое в термостат и последовательно повторяют все действия, начиная с 10.3.
- 10.14 Если температура испытаний превышает 38 °C, дают всем ареометрам типа «свинцовая дробинка в парафине» высохнуть и охладиться в вертикальном положении.

11 Расчет

- 11.1 Вводят поправку в показания термометра (10.13) и записывают значение температуры, округляя его до 0,1 °C.
- 11.2 При испытании непрозрачных жидкостей вводят соответствующую поправку на мениск (таблица 1) в считываемые показания ареометра (10.12), поскольку ареометры калибруют путем считывания на основной поверхности жидкости.

П р и м е ч а н и е — Поправку для конкретного используемого ареометра определяют по максимальной высоте, отсчитываемой от основной поверхности жидкости по шкале ареометра, на которую поднимается нефтепродукт, когда ареометр погружают в прозрачный нефтепродукт, поверхностное натяжение которого равно поверхностному натяжению испытуемого образца. Что касается ареометров, используемых в настоящем методе, см. таблицу 1.

- 11.3 Вводят поправку для ареометра в считываемое с него показание и записывают значение плотности, округляя его до 0,1 кг/м³ (0,0001 г/см³).
- 11.4 Переводят скорректированные показания ареометра в значения плотности, используя таблицы измерения параметров нефти 53A, 53B или 53D, представленные в ИСО 91-1, в соответствии со свойствами испытуемых продуктов:

```
сырые нефти — 53А;
нефтепродукты — 53В;
смазочные масла — 53D.
```

Стандартный метод перевода состоит в использовании компьютерных методов, представленных в таблицах измерения параметров нефти (том X) по ИСО 91-1. Поправку для показаний стеклянного ареометра необходимо ввести в подпрограмму. Если используют распечатанные таблицы, необходимо ввести погрешности, приведенные в списке опечаток в ИСО 91-1. Распечатанные таблицы вводятся непосредственно со считанными показаниями ареометра после введения в случае необходимости поправок на мениск и температуры калибровки (приложение A).

. П р и м е ч а н и е 1 — Для перевода значений плотности, выраженных в килограммах на кубический метр, в соответствующие значения, выражаемые в граммах на кубический сантиметр, делят их на 10³.

П р и м е ч а н и е 2.— Для перевода показаний ареометра из одной единицы измерения в другую используют таблицу 3 либо таблицу 51 по ИСО 91-1.

Если ареометр был отградуирован при температуре, не равной 15 °C, показания корректируются в соответствии с приложением A.

12 Запись результатов

Записывают в отчете окончательный результат, округляя его до 0,1 кг/м³ (0,0001 г/см³), при температуре 15 °C...

13 Прецизионность

13.1 Повторяемость (сходимость)

Разность между последовательными результатами испытаний, полученными одним и тем же оператором на одной и той же аппаратуре при постоянных рабочих условиях для идентичных испытуемых продуктов при нормальном и правильном проведении испытания, может превышать значения, приведенные в таблице 3, только в одном случае из двадцати.

6

Таблица 3 — Повторяемость (сходимость)

Продукт	Диапазон температуры, *С	Единица измерения	Повторяемость (сходимасть)
Прозрачный маловязкий	От -2 до +24,5	kr/м ³ r/oм ³	0,5 0,0005
Непрозрачный	От -2-до +24,5	Kr/M ³ r/cM ²	0,6 0,0006

13.2 Воспроизводимость

Разность между двумя единичными результатами испытаний, полученными разными операторами в разных лабораториях для идентичных испытуемых продуктов при нормальном и правильном проведении испытаний, может превышать значения, приведенные в таблице 4, только в одном случае из двадцати.

Таблица 4 — Воспроизводимость

Продукт	Диапазон температуры, "С	Единица измерения	Воспроизводимость
Прозрачный маловязкий	От -2 до +24,5	kr/m ³ . r/cm ³	1,2 0,0012
Непрозрачный	От -2 до +24,5	KF/M ³ F/GM ³	1,5 0,0015

П р и м е ч а н и е 1 — Для вязких сырых нефтей и нефтепродуктов, а также если температура испытаний выходит за пределы, приведенные в 13.1 и 13.2, данные по прецизионности отсутствуют.

П р и м е ч а н и е 2 — Данные по прецизионности, приведенные в 13.1 и 13.2, были получены с использованием соответствующих ареометров, максимальная допустимая погрешность шкалы которых составляла 0,6 кг/м³ (0,0006 г/см³). Для соответствующих ареометров, максимальная допустимая неопределенность шкалы которых составляла 0,2 кг/м³ (0,0002 г/см³) и 0,3 кг/м³ (0,0003 г/см³), данные отсутствуют; тем не менее, в этом случае можно ожидать равноценной или лучшей прецизионности измерения плотности.

14 Отчет по испытанию

Отчет по испытанию должен включать:

- тип и наименование испытуемого продукта;
- ссылку на настоящий стандарт:
- результат испытаний (раздел 12);
- любые отклонения, по соглашению или без него, от установленного метода измерений;
- дату проведения испытаний.

Приложение A (обязательное)

Введение поправок в показания ареометров из натриево-кальциево-силикатного стекла, отградуированных при температурах, не равных 15 °C

При использовании ареометра, отградуированного при температуре, не равной 15°C, корректируют его показания так, чтобы они соответствовали показаниям ареометра, отградуированного при температуре 15°C, используя следующую формулу

$$\rho_{18} = \frac{\rho_t}{1 - 23 \cdot 10^{-8} (t - 15) - 2 \cdot 10^{-8} (t - 15)^{\frac{1}{2}}},$$
(A.1)

где ρ_{15} — плотность при температуре 15 °C;

t — стандартная температура используемого ареометра. °C;

р. — показание ареометра, стандартная температура которого (отличающаяся от 15 °C), ° С, равна г.

Приложение В (справочное)

Сведения о соответствии национальных стандартов Российской Федерации ссылочным международным стандартам

Таблица В.1

Обозначение ссылочного международного стандарта	Обозначение и наименование соответствующего национального стандарта		
ИСО 91-1:1992	·		
ИСО 649-1:1992	*		
исо 3170:1988	ГОСТ 2517—85. Нефть и нефтепродукты. Методы отбора проб		
ИСО 3171:1988	ГОСТ 2517—85. Нефть и нефтепродукты. Методы отбора проб		

Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

ГОСТ Р ИСО 3675-2007

Библиография

[1] ИСО 3007:1986 Нефтепродукты. Определение давления паров. Метод Рейда[2] ИСО 3015:1992 Нефтепродукты. Определение температуры помутнения

[3] ИСО 3016:1994. Нефтепродукты. Определение температуры потери текучести

[4] IP 389/93 Определение температуры начала кристаллизации в среднедистиллятных топливах на основе дифференциального термического анализа (ДТА) или дифференциальной сканирующей

калориметрии (ДСК)

УДК 662.753.1:006.354 ОКС 75.080 Б29 ОКСТУ 0209

Ключевые слова: сырая нефть, жидкие нефтепродукты, лабораторный метод, определение, плотность (масса /объем), ареометр

Редактор Л.И. Нахимова. Технический редактор Н.С. Гришанова Корректор Т.И. Кононенко Компьютерная верстка И.А. Напейкиной

Сдано в набор 27.09.2007. Подписано в печать 19.11.2007. Формат 60 к 84 %. Бумага офсетная. Гарнитура Ариал, Печать офсетная. Усл. печ. л. 1,88. Уч. изд. л. 1,10. Тираж 413 экз. Зак. 753.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный лер., 4.
www.gostinfo.ru info@gostinfo.ru
Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.
Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.

