ГОСУД<u>арствен</u>ный стандарт союза сср

Система стандартов безопасности труда

СИСТЕМЫ ВЕНТИЛЯЦИОННЫЕ

Методы аэродинамических испытаний

ΓΟCT 12.3.018-79

Occupational safety standards system.

Ventilation systems.

Aerodynamic test methods

MINUSE.

Постановлением Государственного комитета СССР по стандартам от 5 сентября 1979 г. № 3341 срок введения установлен

c 01.01.81

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на аэродинамические испытания вентиляционных систем зданий и сооружений.

Стандарт устанавливает методы измерений и обработки результатов при проведении испытаний вентиляционных систем и их элементов для определения расходов воздуха и потерь давления.

1. МЕТОД ВЫБОРА ТОЧЕК ИЗМЕРЕНИЯ

1.1. Для измерения давлений и скоростей движения воздуха в воздуховодах (каналах) должны быть выбраны участки с расположением мерных сечений на расстояниях не менее шести гидравлических диаметров $D_{\rm h}$, м за местом возмущения потока (отводы, шиберы, диафрагмы и т. п.) и не менее двух гидравлических диаметров перед ним.

При отсутствии прямолинейных участков необходимой длины допускается располагать мерное сечение в месте, делящем выбранный для измерения участок в отношении 3:1 в направлении движения воздуха.

Примечание, Гидравлический диаметр определяется по формуле

$$D_h \sim \frac{4F}{11}$$
,

где F, м² и П, м. соответственно, площадь и периметр сечения.

Издание официальное

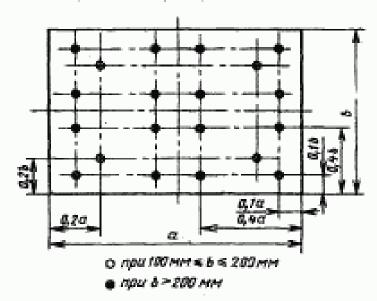
Перепечатка воспрещена

★

Переиздание. Июль 1987-г.

- Допускается размещать мерное сечение непосредственно в месте внезапного расширения или сужения потока. При этом размер мерного сечения принимают соответствующим наименьшему сечению канала.
- 1.3. Координаты точек измерений давлений и скоростей, а также количество точек определяются формой и размерами мерного сечения по черт. 1 и 2. Максимальное отклонение координат точек измерений от указанных на чертежах не должно превышать ±10%. Количество измерений в каждой точке должно быть не менее трех.
- При использовании анемометров время измерения в каждой точке должно быть не менее 10 с.

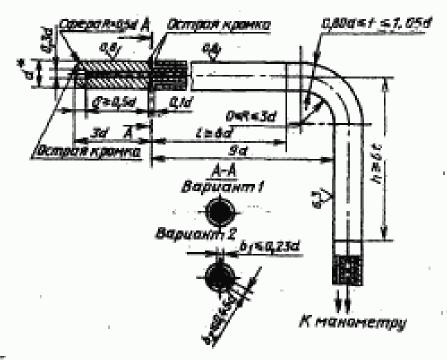
Координаты точек измерения давлений и скоростей в воздуховодах цилиндрического сечения



Черт: 1

2. АППАРАТУРА

- Для аэродинамических ислытаний вентиляционных систем должна применяться следующая аппаратура:
- а) комбинированный приемник давления для измерения динамических давлений потока при скоростях движения воздуха более 5 м/с и статических давлений в установившихся потоках (черт. 3);
- б) приемник полного давления для измерения полных давлений потока при скоростях движения воздуха более 5 м/с (черт. 4);


Координаты точек измерения давлений и скоростей в воздуховодах прямоугольного сечения

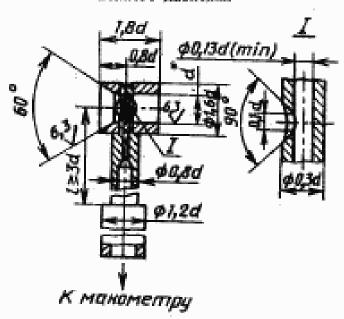
Черт. 2

в) дифференциальные манометры класса точности от 0,5 до 1,0 по ГОСТ 11161—84, ГОСТ 18140—84 и тягомеры по ГОСТ 2648—78— для регистрации перепадов давлений;

Основные размеры премной части комбинированного приемника давления

^{::} Диаметр d не должен превышать 8 % внутреннего диаметра круглого ван ширины (по внутреннему обмеру) прямоугольного воздуховода:

C. 4 FOCT 12.3.018-79


г) анемометры по ГОСТ 6376—74 и термоанемометры — для измерения скоростей воздуха менее 5 м/с;

д) барометры класса точности не ниже 1,0 — для измерения

давления в окружающей среде;

 е) ртутные термометры класса точности не ниже 1,0 по ГОСТ 13646—68 и термопары — для измерения температуры воздуха;

Основные размеры приемной части приемника полного давления

^{*} Ливметр d не должен превышать 6% внутреннего диаметра круглого или ширины (по внутреннему обмеру) прямоугольного вездуховода.

Черт. 4

ж) психрометры класса точности не ниже 1,0 и психрометрические термометры по ГОСТ 112—78 — для измерения влажности воздуха.

Примечание. При измерениях скоростей воздуха, превышающих 5 м/с в потоках, где затрудиено применение приемияков давления допускается использовать анемометры по ГОСТ 6376—74 и термоанемометры.

- Конструкции приборов, применяемых для измерения скоростей и давлений запыленных потоков, должны позволять их очистку от пыли в процессе эксплуатации.
- Для проведения аэродинамических испытаний в пожаровзрывоопасных производствах должны применяться приборы, соответствующие категории и группе производственных помещений.

3. ПОДГОТОВКА К ИСПЫТАНИЯМ

 Перед испытаниями должна быть составлена программа испытаний с указанием цели, режимов работы оборудования и условий проведения испытаний.

3.2. Вентиляционные системы и их элементы должны быть про-

верены и обнаруженные дефекты устранены,

3.3. Показывающие приборы (дифференциальные манометры, психрометры, барометры и др.), а также коммуникации к ним следует располагать таким образом, чтобы исключить воздействие на них потоков воздуха, вибраций, конвективного и лучистого тепла, влияющих на показания приборов.

3.4. Подготовку приборов к испытаниям необходимо проводить в соответствии с паспортами приборов и действующими инструк-

циями по их эксплуатации.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЙ

4.1. Испытания следует проводить не ранее чем через 15 мин. после пуска вентиляционного агрегата.

4.2. При испытаниях, в зависимости от программы, измеряют: барометрическое давление окружающей воздушной среды В., $\kappa\Pi a (\kappa rc/cm^2)$;

температуру перемещаемого воздуха по сухому и влажному термометру, соответственно, t и /: , °C;

температуру воздуха в рабочей зоне помещения $t_{s,s}$ °C;

динамическое давление потока воздуха в точке мерного сечения p_{di} , к Πa (кгс/м²);

статическое давление воздуха в точке сечения ры мерного $\pi\Pi a \ (\kappa rc/M^2);$

полное давление воздуха в точке Meditoro сечения р., $\kappa\Pi a (nerc/ee^2)$;

время перемещения анемометра no площади мерного сече-HHR t. Ct.

число делений счетного механизма оборотов механического анемометра за время т обвода сечения л.

Примечания:

1. Измерения статического или полного давлений производят при определении давления, развиваемого вентилятором, и потерь давления в вентиляционной сети или на ее участке:

- Значение полного (р. мПа, кгс/см²) и статического (р_в. «Па, кгс/м²) давлений представляют собой соответствующие перепады волных и статических давлений потока с барометрическим давлением окружающей среды, считается положительным, если соответствующее значение превышает давление окружающей среды, в противном случае р и р_s — отрицательны.
- 4.3. При измерении давлений и скоростей потока в воздуховодах и расположении мерного сечения на прямолинейном участке длиной не менее $8D_{\pi}$ допускается проводить измерения статического давления потока воздуха и в отдельных точках сечения полного давления комбинированным приемником давления.
- 4.4. Зазоры между измерительными приборами и отверстиями. через которые они вводятся в закрытые каналы, должны быть уп-

лотнены во время испытаний, а отверстия закрыты после проведения испытаний.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЯ

 На основе величин, измеренных в соответствии с программой, определяют:

относительную влажность перемещаемого воздуха ф. %;

плотность перемещаемого воздуха р, кг/м³ (кгс-с²/м⁴);

скорости движения воздуха и, м/с;

расход воздуха L, м³/с;

потери полного давления в вентиляционной сети или в отдельных ее элементах Δp , к Π a (кгс/м²);

коэффициент потерь давления вентиляционной сети или ее эле-

мента 🐎

- Относительную влажность перемещаемого воздуха определяют по показаниям сухого и влажного термометра в соответствии с паспортом прибора.
 - 5.3. Плотность перемещаемого воздуха определяют по формуле

$$\rho = \frac{B_8 + p'}{RK_{\oplus} (t + 27s)} ,$$

- где p' статическое или полное давление потока, измеренное комбинированным приемником давления или приемником полного давления в одной из точек мерного сечения;
 - К_Ф коэффициент, зависящий от температуры и влажности перемещаемого воздуха. Значение К_Ф определяется по табл. 1.

Зависимость коэффициента K_{ϕ} от температуры и влажности перемещаемого воздуха

									Габлі	rua 1
t°, C	10		20		30		40		50	
φ. %:	50	100	50	100 .	50	100	53	100	50	100
K_{ψ}	0,998	1,003	1,033	1,005	1,034	1,012	1,010	1,025	1,020	1,040

5:4. Динамическое давление p_d , кПа (кгс/м²) средней скорости движения воздуха определяют по измеренным в z точках (черт. 1

или 2) комбинированным приемником давления величинам динамических давлений рац по формуле

$$p_d = \left(\frac{\sum_{i=1}^{z} p_{di}^{0.5}}{z}\right)^2$$
.

5.5. Скорость движения воздуха v_i , м/с в точке мерного сечения по измерениям динамического давления $\rho_{\rm dl}$ определяют согласно формуле

 $v_1 = \left(\frac{2}{p} p_{d1}\right)^{0.5}.$

5.6. Среднюю скорость движения воздуха v_m , м/с в мерном сечении по измерениям динамического давления в 2 точках (по черт. 1 или 2) определяют по формуле

$$v_m = \left(\frac{2}{p} p_d\right)^{0,5}$$
.

 При измерениях анемометрами скорость движения воздуха в отдельных точках мерного сечения определяют по показаниям прибора п и графику индивидуальной тарировки прибора v (n); при этом среднюю скорость движения воздуха и попределяют по формуле

$$v_m = \frac{\sum_{i=1}^{z} v_i}{z}$$
.

- Объемный расход L, м³/с воздуха определяют по формуле $L = F \cdot v_{\text{max}}$
- 5.9. Статическое давление p_s потока в мерном сечении определяют по следующим формулам:
- $p_{s} = \frac{\sum\limits_{i=1}^{S}(p_{i}-p_{di})}{z}$ при измерениях полных и динамических давлений;
- $p_s = \frac{\sum\limits_{i=1}^{z} p_{si}}{\sum\limits_{i=1}^{z} p_{i}}$ при измерениях статических давлений; в) $p_s = \frac{\sum\limits_{i=1}^{z} \binom{p_i p \frac{v_i^2}{2}}{2}}{\sum\limits_{i=1}^{z} \binom{p_i p \frac{v_i^2}{2}}{2}}$ при измерениях скоростей потока и полных давлений.
- лых давления. 5.10. Полное давление *р* потока в мерном сечении рассчитывают по формулам

$$p = \frac{\sum\limits_{i=1}^{z} p_i}{z}$$
 или $p = \frac{\sum\limits_{i=1}^{z} (p_{st} + p_{i1})}{z}$.

Потери полного давления элемента сети определяют по формуле

$$\Delta p = p_1 - p_2$$

- где p_1 и p_2 полиме давления, определенные по п. 5.10, в мерных сечениях 1 и 2, расположенных, соответственно, на входе в элемент и на выходе из него.
- Потери полного давления элемента сети, расположенного на входе в сеть, определяют по формуле

$$\Delta p = p_z$$
.

 5.13. Потери полного давления элемента сети, расположенного на выходе из сети, определяют по формуле

$$\Delta p = p_1$$
.

 Коэффициент потерь давления элементов сети определяют по формуле

$$\zeta = \frac{\Delta p}{\rho_d}$$
 ,

- где p_d динамическое давление (по п. 5.4) в мерном сечении выбранном в качестве характерного.
- 5.15. Динамическое давление $p_{\rm dv}$, кПа (кгс/см²) вентилятора определяют по формуле

$$p_{\rm dv} = \frac{\rho}{2} \left(\frac{L}{F_{\rm cr}}\right)^2$$
,

где F_{v} — площадь выходного отверстия вентилятора.

5.16. Статическое давление $p_{\rm sv}$, кПа (кгс/м²) вентилятора определяют по формуле

$$p_{sr} = p_{s2} - p_{s1} - p_{d1}$$

- где p_{s1} и p_{s2} соответственно статические давления в мерных сечениях 1 и 2 перед и за вентилятором, определенные по п. 5.9;
 - р_{d1} динамическое давление в мерном сечении 1, на входе в вентилятор, определенное по п. 5.4.
- 5.17. Полное давление вентилятора p_v , кПа (кгс/м²) равно суммарным потерям Δp_{Σ} сети и определяется по формуле

$$p_v = p_x - p_t$$

Примечание. Безразмерные параметры, характеризующие аэродинамические свойства собственно вентилятора (его воэффициенты полного ψ_v , статического ψ_s и двиамического ϕ_{dv} давлений, а также коэффициент расхода воздуха ϕ_v) определяют, если это предусмотрено программой испытаний, поформулам, приведенным в ГОСТ 10921—74.

5.18. В случаях, предусмотренных программой испытаний, производят расчет предельной погрешности определения расхода воздуха по результатам измерений. Порядок расчета при измерениях вневмометрический насадком в сочетании с дифференциальным манометром дан в рекомендуемом приложения і.

6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 6.1. При проведении аэродинамических испытаний вентиляционных систем должны соблюдаться требования безопасности согласно ГОСТ 12.4.021—75.
- Проведение аэродинамических испытаний не должно ухудшать проветривание и приводить к скоплению варывоопасной концентрации газов.

РАСЧЕТ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЯ РАСХОДА ВОЗДУХА КОМБИНИРОВАННЫМ ПРИЕМНИКОМ ДАВЛЕНИЯ В СОЧЕТАНИИ С ДИФФЕРЕНЦИАЛЬНЫМ МАНОМЕТРОМ

Из уравнений пп. 4.3-4.8 следует:

$$L = F\left(\frac{z}{p}\right)^{0.5} \cdot \frac{\sum_{i=1}^{z} (p_{ai})^{0.5}}{z}$$

При этом предельная относительная погрешность определения расхода воздуха в процентах выражается следующей формулой:

$$\delta_L = (2\sigma_L + \delta_A)$$
,

гле σ_L — среднеквадратичная относительная погрешность, обусловленная неточностью измерений в процессе испытаний $g_{L^{1/2}}$

б_ф — предельная относительная погрешность определения расхода воздуха, связанная с неравномерностью распределення скоростей в мерном сечении; величины б_ф даны в табл. I настоящего приложения.

Величина од представляется в виде:

$$\sigma_L = \left(4\sigma_D^2 + \frac{1}{4}\sigma_B^2 + \frac{1}{4}\sigma_t^2 + \frac{1}{4}\sigma_\rho^2\right)^{0.5}$$
,

где σ_D — среднеквадратичная погрешность определения размеров мерного сечения, зависящая от гидравлического диаметра воздуховода; при $100~{\rm mm} < D_{\rm h} = 300~{\rm mm}$ величина $\sigma_D = \pm 3\%$, при $D_A > 300~{\rm mm}$ $\sigma_D = \pm 2\%$;

 $\sigma_{\rm p},\,\sigma_{\rm B}$, $\sigma_{\rm f}$ — среднеквадратичные погрешности измерений, соответственно, динамического давления $P_{\rm d}$ потока, барометрического давления $B_{\rm s},\,$ температуры t потока, величицы $\sigma_{\rm p},\,\sigma_{\rm B}$, $\sigma_{\rm t}$ даны в табл. 2 настоящего приложения.

Пользуясь табл. 1 и 2 и приведенными формулами вычисляют предельную погрешность определения расхода воздуха.

Таблица і

Предельная относительная погрешность δ_{ϕ} , вызванная неравномерностью распределения скоростей в мерном сечении

Форма мер- вого сочения	Число точек намережий	δ , \S , при расстоянии от места возмущения потока до мериото сечении в гидо-влических двиметрах D_b						
		1	3	3	5	>5		
Kpyr	4	20	16	12	6	3		
	8	16	12	10	5	2		
	12	12	8	6	3	2		
Прямо-	4	24	20	15	8	4 2		
угольник	16	12	8	6	3			

. Таблица 2 Среднеквадратичные погрешности $\sigma_{\rm p}$, $\sigma_{\rm B}$, $\sigma_{\rm r}$ показаний приборов

Показание прибора в долж	σ _p , σ _p , σ _t , ‰ , ω	я приборов класся точности
дляны шявлы	10	0,5
1,00° 0,75 0,50 0,25 0,10 0,05	±0.5 ±0.7 ±1.0 ±2.0 ±5.0 ±10.0	±0,25 ±0,24 ±0,5 ±1,0 ±2,5 ±5,0

Пример. Мерное сечение расположено на расстоянии 3-х днаметров за коленом воздуховода диаметром 300 мм (т. е. $\sigma_D = \pm 3 \%$). Измереняя производят комбинированным приемником давления в 8-ми точках мерного сечения (т. е. по табл. 1 $\delta_\phi \simeq \pm 10\%$). Класс точности приборов (дифманометр, барометр, термометр) — 1.0. Отстеты по всем приборам производятся, примерно, в середине шкалы, т. е. по табл.2, $\sigma_p \simeq \sigma_8 = \sigma_4 = \pm 1.0\%$. Предельная относительная погрешкость измерения расхода воздухи составит:

$$\delta_L = 2(4 \cdot 3^2 + \frac{1}{4} \cdot 4 + \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 1)^{0.5} \cdot 10 = \pm 12 + 10 = \pm 22\%, -2\%$$

1**48** : 1162 - .