МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ПЛАСТМАССЫ

МЕТОДЫ ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ ПРИ РАСТЯЖЕНИИ, СЖАТИИ И ИЗГИБЕ

Издание официальное

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

УДК 678.5:6.001.4:006.354 Группа Л29

межгосударственный стандарт

ПЛАСТМАССЫ

ГОСТ 9550—81

Методы определения модуля упругости при растяжении, сжатии и изгибе

Взамей ГОСТ 9550—71

Plastics. Methods for determination of elasticity modulus at strength, compression and bending

...

MKC 83.080

Постановлением государственного комитета СССР по стандартам от 26 августа 1981 г. № 4058 дата введения установлена

01.07.82

Ограничение срока действия снято по протоколу № 5—94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)

Настоящий стандарт распространяется на пластмассы и устанавливает методы определения модуля упругости при растяжении, сжатии и изгибе.

Стандарт не распространяется на ячеистые пластмассы и пленки из пластмасс.

Стандарт полностью соответствует СТ СЭВ 2345—80.

Термины, применяемые в настоящем стандарте, и их пояснения приведены в приложении.

1. МЕТОД ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ ПРИ РАСТЯЖЕНИИ

1.1. Сущность метода

Сущность метода заключается в определении модуля упругости при растяжении как отношения приращения напряжения к соответствующему приращению относительного удлинения, установленному настоящим стандартом.

1.2. Отбор образцов

- 1.2.1. Для испытания применяют образцы по ГОСТ 11262—80.
- 1.2.2. Количество образцов, взятых для испытания одной партии материала, а для анизотропных материалов в каждом из выбранных направлений, должно быть не менее 3.

1.3. Аппаратура

Для проведения испытания применяют аппаратуру по ГОСТ 11262—80, при этом испытательная машина должна обеспечивать скорость раздвижения зажимов (1,0±0,5) % в минуту, а прибор для измерения удлинения должен обеспечивать измерение с погрешностью не более 0,002 мм.

1.4. Подготовка к испытанию

- 1.4.1. Перед испытанием образцы кондиционируют в стандартной атмосфере по ГОСТ 12423—66 не менее 16 ч, если в нормативно-технической документации на конкретную продукцию нет других указаний.
 - 1.4.2. Перед испытанием измеряют толщину и ширину образца по ГОСТ 11262—80.

1.5. Проведение испытания

1.5.1. Испытание проводят при температуре и относительной влажности, указанных в нормативно-технической документации на конкретную продукцию.

Если в нормативно-технической документации на конкретную продукцию нет других указаний, то испытание проводят в соответствии с ГОСТ 12423—66 при температуре (23±2) °C и относительной влажности (50±5) %.

Издание официальное

Перепечатка воспрещена

Издание (май 2004 г.) с Поправкой (ИУС 11-89).

© Издательство стандартов, 1981 © ИПК Издательство стандартов, 2004

- 1.5.2. Образец закрепляют в машину так, чтобы продольные оси зажимов и ось образца совпадали с линией, соединяющей точки крепления зажимов на испытательной машине:
- 1.5.3. На образце, закрепленном в зажимах, проводят установку и настройку прибора для измерения удлинения.
- 1.5.4. Образец нагружают при скорости раздвижения зажимов испытательной машины, обеспечивающей скорость деформации образца (1,0±0,5) % в минуту. Нагружение осуществляют до величины относительного удлинения 0,5 %.

Если образцы разрушаются до достижения относительного удлинения 0,5 %, нагружение проводят до меньшей величины деформации, установленной в нормативно-технической документации на конкретную продукцию.

- 1.5.5. Графическую запись нагрузки и деформации проводят в следующем масштабе:
- 100-150 мм на диаграмме должно соответствовать 0,4 % относительного удлинения;

не менее 100 мм на диаграмме должно соответствовать приращению нагрузки, соответствующему увеличению относительного удлинения на 0,4 %.

1.6. Обработка результатов

- 1.6.1. По диаграмме определяют значения нагрузки, соответствующие величинам относительного удлинения 0,1 и 0,3 %. Допускаются меньшие значения относительного удлинения для образцов, предусмотренных в п. 1.5.4.
 - 1.6.2. Модуль упругости при растяжении (E_p) в МПа вычисляют по формуле

$$E_{\rm p} = \frac{(F_2-F_1)\cdot I_0}{A_0\cdot (\Delta\;I_2-\Delta\;I_1)}\;, \label{eq:epsilon}$$

где F_2 — нагрузка, соответствующая относительному удлинению 0,3 %, H;

F₁ — нагрузка, соответствующая относительному удлинению 0,1 %, H;

– расчетная длина образца, мм;

До — площадь начального поперечного сечения образца, мм²;

 ΔI_{2} — удлинение, соответствующее нагрузке F_{2} , мм;

 ΔI_1 — удлинение, соответствующее нагрузке F_1 , мм.

- За результат испытания принимают среднеарифметическое значение всех параллельных определений.
 - 1.6.4. Величину стандартного отклонения вычисляют по ГОСТ 14359—69.
- 1.6.5. Результаты испытания записывают в протокол, который должен содержать следующие данные:

наименование и марку пластмассы и номер партии;

метол испытания:

наименование испытательной машины;

тип и марку прибора для измерения деформации;

условия проведения испытания (скорость нагружения, температура, графическая запись и т.д.); тип испытуемого образца (форма, размеры);

условия подготовки испытуемого образца;

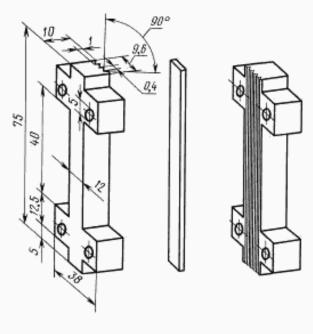
количество образцов, взятых для испытания;

среднеарифметическое определяемого показателя и стандартное отклонение;

дату испытания;

обозначение настоящего стандарта.

2. МЕТОД ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ ПРИ СЖАТИИ


2.1. Сущность метода

Сущность метода заключается в определении модуля упругости при сжатии как отношения приращения напряжения к соответствующему приращению относительной деформации сжатия, установленному настоящим стандартом.

2.2. Отбор образнов

2.2.1. Для испытания применяют образцы по ГОСТ 4651—82. База измерения деформации должна составлять не менее 10 мм и не более ²/₃ высоты образца при измерении деформации прибором, установленным на образце.

Приспособление для испытания на сжатие образцов толщиной менее 5 мм

Черт. 1

При изготовлении образцов из изделий толщиной менее 5 мм используют образцы в форме прямоугольных пластин размерами (80±2) × (10,0±0,5) мм, а толщина образца равна толщине изделия. Для армированных пластмаес ширина образцов равна (15,0±0,5) мм. Для предотвращения потери устойчивости при испытании таких образцов применяют приспособление (черт. 1).

 2.2.2. Количество образцов должно соответствовать п. 1.2.2.

2.3. Аппаратура

Для проведения испытания применяют аппаратуру по ГОСТ 4651—82, при этом испытательная машина должна обеспечивать скорость сближения опорных площадок со скоростью деформации образца (1,0±0,5) % в минуту, а прибор для измерения деформации сжатия должен обеспечивать измерение с погрешностью не более 0,002 мм.

2.4. Подготовка к испытанию

- 2.4.1. Перед испытанием образцы кондиционируют в стандартной атмосфере по ГОСТ 12423—66 не менее 16 ч, если в нормативно-технической документации на конкретную продукцию нет других указаний.
- 2.4.2. Перед испытанием измеряют размеры образцов по ГОСТ 4651—82.

2.5. Проведение испытания

- 2.5.1. Испытания проводят при температуре и относительной влажности, указанных в п. 1.5.1.
- Образец устанавливают на опорных плитах испытательной машины так, чтобы продольная ось образца совпадала с направлением действия силы.
- Устанавливают прибор для измерения деформации. Деформацию при сжатии определяют измерением расстояния между площадками или по изменению базы на образце (см. п. 2.2.1).
- 2.5.4. Образец нагружают при скорости сближения площадок испытательной машины, обеспечивающей скорость деформации образца (1,0±0,5) % в минуту. Нагружение осуществляют до величины деформации 0,5 %.

Если образцы разрушаются до достижения относительной деформации 0,5 %, нагружение осуществляют до меньшей величины деформации, установленной в нормативно-технической документации на конкретную продукцию.

 2,5.5. Графическую запись нагрузки и деформации проводят в соответствии с п. 1.5.5 при значениях относительной деформации сжатия, равных значениям относительного удлинения, указанных в п. 1.5.5.

2.6. Обработка результатов

2.6.1. По диаграмме определяют значения нагрузки, соответствующие величинам относительной деформации 0.1 и 0.3 %.

Допускаются меньшие значения относительной деформации при сжатии для образцов, предусмотренных в п. 2.5.4.

Модуль упругости при сжатии (E_c) в МПа вычисляют по формуле

$$E_{\rm c} = \frac{(F_2 - F_1) \cdot h_0}{A_0 (\Delta h_2 - \Delta h_2)}$$
,

где F₁ — нагрузка, соответствующая относительной деформации 0,3 %, H;

F₁ — нагрузка, соответствующая относительной деформации 0,1 %, H;

 h_0 — начальная высота образца или базы, мм;

А₀ — площадь начального поперечного сечения образца, мм²;

 Δh_2 — изменение высоты или базы, соответствующее нагрузке F_2 , мм;

 Δh_1 — изменение высоты или базы, соответствующее нагрузке, F_1 , мм.

- За результат испытания принимают среднеарифметическое значение всех параллельных определений.
 - 2.6.4. Величину стандартного отклонения вычисляют, как указано в п. 1.6.4.
 - Результаты испытания оформляют протоколом, как указано в п. 1.6.5.

3. МЕТОД ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ ПРИ ИЗГИБЕ

3.1. Сущность метода

Сущность метода заключается в определении модуля упругости при изгибе как отношения приращения напряжения к соответствующему приращению относительной деформации, установленному настоящим стандартом.

3.2. Отбор образнов

- Для испытания применяют образцы по ГОСТ 4648—71.
- 3.2.2. Количество образцов должно соответствовать п. 1.2.2.

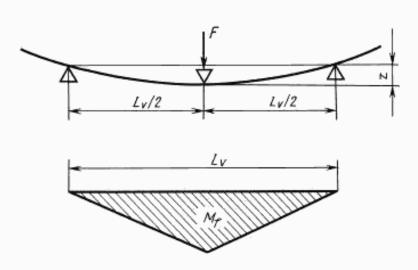
3.3. Аппаратура

Для проведения испытания применяют аппаратуру по ГОСТ 4648—71, при этом испытательная машина должна обеспечивать скорость сближения нагружающего наконечника и опор, соответствующую скорости деформации образца (1,0±0,5) % в минуту, а прибор для измерения деформации образца должен обеспечивать измерение с погрешностью не более 0,01 мм.

3.4. Подготовка к испытанию

- 3.4.1. Перед испытанием образцы кондиционируют в стандартной атмосфере по FOCT 12423—66 не менее 16 ч, если в нормативно-технической документации на конкретную продукцию нет других указаний.
 - 3.4.2. Перед испытанием измеряют размеры образцов по ГОСТ 4648-71.

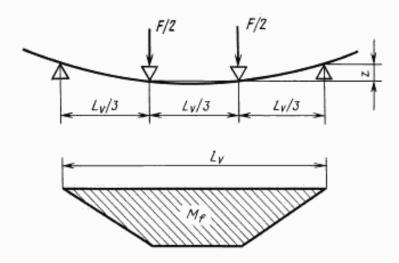
3.5. Проведение испытания


- 3.5.1. Испытания на изгиб проводят двумя методами:
- А при нагружении по трехточечной схеме (черт. 2);
- Б при нагружении по четырехточечной схеме (черт. 3).

При методе А испытуемый образец нагружают наконечником в середине расстояния между опорами.

При методе Б испытуемый образец нагружают парой наконечников, расположенных в средней трети расстояния между опорами.

Трехточечная схема нагружения при изгибе


Метод А

Черт. 2

Четырехточечная схема нагружения при изгибе

Метод Б

F — нагрузка; L_{ν} — расстояние между опорами; z — протиб; M_f — эпзора момента

Черт. 3

Выбор метода предусматривается в нормативно-технической документации на конкретную продукцию.

Прогиб измеряют:

в методе A — в середине расстояния между опорами (черт. 2). Величину прогиба оценивают по величине перемещения подвижной части нагружающего устройства;

в методе Б — в соответствии с черт. 3.

- 3.5.2. Испытания проводят при температуре и относительной влажности, указанных в п. 1.5.1.
- 3.5.3. Расстояние между опорами (L_y) устанавливают в зависимости от толщины образца (h) от 15h до 17h мм и измеряют с погрешностью не более 0,5 %.
- 3.5.4. На образце, лежащем на опорах, осуществляют установку и настройку прибора для измерения прогиба.
- 3.5.5. Образцы нагружают при скорости сближения нагружающего наконечника и опор, обеспечивающей скорость деформации образца (1,0±0,5) % в минуту.

Нагружение осуществляют до величины относительной деформации крайних волокон 0,5 %. Относительную деформацию крайних волокон (ε) вычисляют по формуле для метода A

$$\varepsilon = \frac{6zh}{L_x^2};$$

для метода Б

$$\varepsilon = \frac{zh}{0.185 \cdot L_{\nu}^{2}},$$

где г - значение прогиба, мм;

h — толщина образца, мм;

 L_{ν} — расстояние между опорами, мм.

Если образцы разрушаются до достижения относительной деформации крайних волокон 0,5 %, нагружение осуществляют до меньшей величины деформации, установленной в нормативно-технической документации на конкретную продукцию.

 3.5.6. Графическую запись нагрузки и деформации проводят в соответствии с п. 1.5.5 при значениях прогиба, соответствующих значениям относительной деформации крайних волокон, указанных в п. 1,5.5.

3.6. Обработка результатов

3.6.1. По диаграмме определяют значения нагрузки и прогиба, соответствующие значениям относительной деформации крайних волокон 0,1 и 0,3 %.

Допускаются меньшие значения относительной деформации при изгибе для образцов, предусмотренных в п. 3.5.5.

3.6.2. Модуль упругости при изгибе ($E_{\rm ны}$) в МПа вычисляют по формуле для метода А

$$E_{\rm max} = \frac{L_{\rm v}^3 \cdot (F_2 - F_1)}{4 \ bh^3 (z_1 - z_2)} \ ;$$

для метода Б

$$E_{\rm mar} = \frac{0.185 \cdot L_{\rm r}^3 \cdot (F_2 - F_{\rm j})}{bh^3 \cdot (z_2 - z_{\rm i})} \; , \label{eq:energy}$$

где L_{ν} — расстояние между опорами, мм;

F₂ — нагрузка при величине относительной деформации крайних волокон 0,3 %, Н;

 $\vec{F_1}$ — нагрузка при величине относительной деформации крайних волокон 0,1 %, H;

b — ширина образца, мм;

h — толщина образца, мм;

трогиб образца, соответствующий относительной деформации крайних волокон 0,3 %, мм;

трогиб образца, соответствующий относительной деформации крайних волокон 0,1 %, мм.

 За результат испытания принимают среднеарифметическое значение всех параллельных определений.

Величину стандартного отклонения вычисляют, как указано в п.: 1.6.4.

3.6.5. Результаты испытания оформляют протоколом, как указано в п. 1.6.5.

ПРИЛОЖЕНИЕ Справочное

Термины, применяемые в настоящем стандарте, и их пояснения

Понятие	Обозна- чение	Единица измерения	Определение
Модуль уп- ругости при растяжении при сжатии при изгибе Скорость дефор- мации	E Ep: Ec Eux u	МПа МПа МПа МПа мин—1	Мера жесткости материала, характеризующаяся сопротивлением развитию упругих деформаций. Модуль упругости определяют как отношение приращения напряжения к соответствующему приращению деформации Изменение относительной деформации растяжения или сжатия в единицу времени. Скорость деформации при растяжении и сжатии определяют как отношение скорости перемещения подвижного элемента испытательной машины (v) к длине образца между кромками зажимов или сжимающими площадками. При изгибе v вычисляют по формуле для метода A $v = \frac{u \cdot L_v^2}{6 h},$ для метода A $v = \frac{u \cdot L_v^2}{6 h},$ где u — скорость относительной деформации крайних волокон образца, равная 0.01 мин $^{-1}$; L_v — расстояние между опорами, мм; h — толщина образца, мм.

ПРИЛОЖЕНИЕ. (Поправка),

Редактор М.И. Максимова
Технический редактор Н.С. Гришанова
Корректор М.С. Кабашова
Компьютерная верстка Е.Н. Мартемыновой

Изд. лиц. № 02354 от 14.07.2000; Сдано в набор 22.06.2004. Подписано в печать 08.07.2004; Усл. печ. л. 0,93... Уч.-изд. л. 0,75. Тараж 154 экз. С 2863. Зак. 623.

> ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14. http://www.standards.ru e-mail: info@standards.ru Набрано в Издательстве на ПЭВМ

Отпечатано в филиале ИПК Издательство стандартов — тип. «Московский печатник», 105062 Москва, Лялин пер., 6. Плр № 080102

